% _
A = SST -115
Software Architecture Standard
for Simulation Virtual Machine
Version 2.0
NAS9-18181
20 April 1994
: INTEGRATED 1 RAINING
Facwity -
Prepared for: Prepared by:
National Aeronautics and Space Administration CAE-Link Corporation
Lyndon B. Johnson Space Center Houston Operations
Houston, Texas 77058 2224 Bay Area Boulevard
Houston, Texas 77058
- (NASA-CR-188291) SOFTWARE N94-356443)
N ARCHITECTURE STANDARD FOR
— SIMULATION VIRTUAL MACHINE, VERSION -
2.0 Final Report (CAE-Link Corp.) unclas
246 p
G3/61 0013762

LI a]

i W

Wl

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviawing the collection of Information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Ardington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington , DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
20 April 1994 Final
4, TITLE AND SUBTITLE 5. FUNDING NUMBERS
Simul i 1 {
mulation Virtual Machine C - NAS9-18181

Software Architecture Standard

6. AUTHOR(S)
Sturtevant, Robert and William Wessale

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
CAE-Link REPORT NUMBERS

2224 Bay Area Blvd.
Houston, TX 77058

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Hill, Ken/DK 1200 NASA Road 1 AGENCY REPORT NUMBER
Mission Operation Directorate Houston, TX 77058-3696 SST-115

Lyndon B. Johnson Space Center (713) 244-7250

|___National Aeronautics and Space Administration
11. SUPPLEMENTARY NOTES

SVM is architecture of the simulation executive developed for and used in the
Space Station Verification and Training Facility (SSVTF).

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
See NASA Handbook NHB 2200.2

13. ABSTRACT (Maximum 200 words)

The Simulation Virtual Machine (SBM) is an Ada architecture which eases the effort
involved in the real-time software maintenance and sustaining engineering. The
Software Architecture Standard defines the infrastructure which all the simulation
models are built from. SVM was developed for and used in the Space Station
Verification and Training Facility.

14. SUBJECT TERMS 15. NUMBER OF PAGES
. , 730
Real-time, rate monotonic, Software architecture 16. PRICE CODE
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescribed by ANSI Std. 239-18

29B8-102

Abstract Cereees

Definition of Terms
Overall Architecture

Real—Time Services
4.1,
4.2,
4.2.1
4.2.1.1
4.2.1.2
422
4.2.2.1
4.2.2.2
423
4.24
4.2.5
4.2.5.1
4.2.5.2
4.2.6
4.26.1
4.2.6.2
4.2.6.3
4.2.7
4.2.7.1
4,2.7.2
428
4.2.9
4.2.10
4.2.11
4.3,
43.1
432
433
4.3.4
434.1
4.4,
44.1
442
4.4.3
444
445

4.6.
4.6.1
4.6.2
46.3
4.6.4
4.7.

Perform a Datastore

Initialize to a Datastore ..
Partition Requirements ...
Datastore Notes . ..
Safestore ..

. 13
Simulator Moding . ..

Simulation Set-Up ...

Register /O /Set-Up ...

Create Data ...
Initialization ...

FllIC ...

State Adjustment ...

Self Initialize ...

System Initialize ...

Freeze ...

Asset Add ...

Asset Drop ...

Run ...

Asset Add ...

Asset Drop ...

Safestore ...

Hold ...

Datastore ...

Abort ...

Terminate ...

Run To Freeze Transition ...

States of a Training Session ...

States of an Asset ...

The Messaging System ...

One —to—Many (Normal) Communication ...
Many-to—One Communication ...

Remote Communication ...
Mailbox communication ..
Mailbox Reads by Partitions ...
The DIS Concept ...

What is the DIS? ...

How is the DIS Organized? ...
Connecting Terms, Prefixes, and Malfunctions ..
Handling Enters, Malfunctions, and Initialization data ...
How Will Off—line Tools Use the DIS? ...
4.5. Mapping Logical Name to Physical Address: DIS & Symbol Map ...
Datastore/Initialization ...
ve. 42
. 42

15
16
16
16
16
16
17
17
18
18
I8
18
19
19
19
19
19
19
19
20
20
20
21
23
23
25
26

. 26

27

28
30

.32

34
36
37
42

42
42

. 47

4.7.1 Perform a Safestore ...

4.7.2 Return to a Safestore ...
»4.73 Partition Requirements ...
474 Safestore Notes ...
4.8. interface agentS ...
48.1 introduction ...
4.8.1.1 Whatis an Asset?7? .
48.1.2 What is an Interface Agent?7 .
4.8.2 interface Agent General Notes . ..
4.8.3 Interface agent for asset withSVM . ..
4.83.1 Simulating Interface ...
483.1.1 Communication ...
483.1.2 Moding ...
48313 Malfunctions ...
483.14 User— Requested Data Entry ...
48.3.2 Effecting Pass— Thru Interface ...
4.8.3.2.1 Communication ...
48322 , Moding ...
48323 Malfunctions ...
48.3.2.4 User— Requested Data Entry ...
4833 Adding Asset ...
4834 Dropping Asset ...
484 Interface agent for asset without SVM . ..
48.4.1 SRR Simulating Interface ...
484.1.1 ... Communication ...
48.4.1.2 Moding ...
484.1.3 Malfunctions ..
484.14 User—Requested Data Entry ...
48.4.2 Effecting Pass—Thru Interface ...
48.4.21 Communication ...
48.4.2.2 Moding ..
48423 Malfunctions ...
48.42.4 User—Requested Data Entry ...
4843 Adding Asset ..
48.4.4 Dropping Asset ...
4.9. Asynchronous /O ...
Non—Real-Time Sectioncocovvrivrieaincriiecennss
5.1. Overall Structure . ..
5.2 . Classes and Instances ...
5.3. Inheritance and Composition ...
5.4. Operational Components ...
54.1 Communicating with Other Operational Components/Partitions . ..
54.1.1 File Exchanging ...
5.4.1.2 Utilizing the Real—Time Interface ...
54.13 ' POSIX Interprocess Communication ...
5.5. Templates and Guidelines . ..

Bibliogl‘aphy':n”i“iiiiiouu--on-o.on-.n:u--.oo; sesseansnuse

Appendix I —Ada Structural Templatescivvionnnnss

7.1 Class Template ..

48

48
48
50
50

.. 50
.. 51

55
56
56
56
56
56
56
57
57
57
57
57
57
58
59
59
59
59
. 59
59
60
60
. 60
60
60
. 6l
6l
62

il
i

¢

‘h

10.

7.2 ' Class Template With Computed Period .. [-3
7.3 Partition Template .. I-5
7.4 Generic Partition Template . [-12
Appendix II —Real Time Interface Packages veo. -1
8.1. Generic Model . II-1
8.2. Message . I1-3
8.3. Mailbox I1-14
83.1 Enter Mailbox 11-20
832 Malfunction_Mailbox 11-22
8.33 Safestore_Mailbox I1-23
8.3.4 Mega Mailbox [1-24
8.4. DIS 1I-26
8.5. SSTF Defs [I-44
8.6. Timer_Services_Class II-55
Appendix III — Questions and AnSWers:ccoeeerinees m-1
9.1. Ada Structural Components: III-1
9.2. Executive Sequencing and Moding: TIT1-4
9.3. 7 Messaging: 1II-5
9.4. Generic Partition: III-6
9.5. ’ DIS III-6
9.6. Datastore: 1II-6
9.7. Interface Agent: II1-7
Appendix IV —Example Code (non—real—time) veees IV—1
11 Appendix V — Hydraulic System Example . V-1
11.1 Real World Hydraulic System . V-1
11.1.1 Fluid Pressurization Assembly . V-1
11.1.1.1 Motor . V—1
11.1.1.2 GearBox . V-1
11.1.1.3 Pump . V-1
11.1.2 Valve . V-1
11.1.3 Accumulator . V-2
11.1.4 Reservoir . V-2
11.1.5 Reservoir Quantity Sensor . V-2
11.1.6 Pressure Sensor . V-2
11.1.7 Distribution System . V-2
11.1.8 : : Return Lines . V=2
11.2 Specification of the Software System . V—-4.
11.2.1 External Components . V-4
11.2.1.1 Control Surfaces . V-4
11.2.1.2 Landing Gear . V-4
11.2.1.3 Electrical System . V-4
11.2.1.4 Hydraulic Control Panel . V-4
11.2.1.5 [0S . V-5
11.2.1.6 Malfunctions . V-3
11.2.1.7 Look and Enter Data . V-5
11.2.1.8 Aural Cue . V-6
11.2.2 Internal Components . V-7

11.3
11.3.1
11.3.2
11.3.3
[1.3.4
11.35
11.4
11.4.1
11.4.2
11.4.3
11.43.1
11.43.2
11.43.3
11.43.4
11.4.4
11.4.5
115
11.5.1
[1.5.2
11.6
11.6.1
11.6.2
11.6.3
11.6.3.1
11.6.3.2
11.6.3.3
11.6.3.4
11.6.3.5
11.6.3.6

Transition to Design .
Sensor Class .
Reservoir Class .

Drive Unit Class .
Hydraulic Pump Class .

Other Classes

Class Specification

Attributes

Type Declarations

Modifier Specifications

Default Modifiers

Update

Request_State_Change

Create

Selector Specifications

Textual Description

Class Examples

The Accumulator Class

The Pressure and Quantity Sensor Class
The Hydraulic System Partition
Hydraulic System Partition Interfaces
Hydraulic_System_Partition Package Specification
Hydraulic_System_Partition Package Body
Generic Class Instantiations

Local Type Definitions

Message Pointers

Class Instances

Internal Data

Creating Thread_Exec

M

al

N {

(

Ada Unit | Accumulator_Class Package Specification V-17
Ada Unit 2 Accumulator_Class Package Body V-18
Ada Unit 3 Accumulator_Class.Report_Symbols Separate Procedure V-19
Ada Unit 4 Generic_Sensor_Class Package Specification V-20
Ada Unit 5 Generic_Sensor_Class Package Body V-21
Ada Unit 6 Generic_Sensor_Class.Report_Symbols Separate Procedure V-22
Ada Unit 7 Elec_Motor_Class Package Specification V-23
Ada Unit 8 ’ Elec_Motor_Class Package Body V-24
Ada Unit9 Elec_Motor_ Class. Report_Symbols Separate Procedure V-25
Ada Unit 10 Dc_Motor_Class Package Specification V-26
Ada Unit 11 Dc_Motor_Class Package Body V-27
Ada Unit 12 Dc_Motor_Class.Report_Symbols Separate Procedure V-28
Ada Unit 13 Gear_Box_Class Package Specification V-29
Ada Unit 14 Gear_Box_Class Package Body V-30
Ada Unit 15 Gear_Box_Class. chort Symbols Separate Procedure V—30
Ada Unit 16 Drive_Unit_Class Package Specification V=32
Ada Unit 17 Drive_Unit_Class Package Body V-33
Ada Unit 18 Drive_Unit_Class.Report_Symbols Separate Procedure V-34
Ada Unit 19 Drive_Unit_Class.Update Separate Procedure V-—34
Ada Unit 20 Positive_Displacement_Pump_Class Package Specification V-36
Ada Unit 21 Positive_Displacement_Pump_Class Package Body V-37
Ada\l/)niStSZZPositive;Displace ment_Pump_Class.Report_Symbols Separate Procedure

Ada Unit 23 Axial_Piston_Pump_Class Package Specification V-39
Ada Unit 24 Axial_Piston_Pump_Class Package Body V-40
AdaUnit25 Axial_Piston_Pump_Class.Report_Symbols Separate Procedure V- 42
Ada Unit 26 Actuator_Class Package Specification V-43
Ada Unit 27 Actuator_Class Package Body V-44
Ada Unit 28 Actuator_Class.Report_Symbols Separate Procedure ' V—45
Ada Unit 29 Centrifugal Pump_Class Package Specification V-47
Ada Unit 30 Centrifugal_Pump_Class Package Body V-48
Ada Unit 31 Centrifugal Pump_Class.Report_Symbols Separate Procedure V-48
Ada Unit 32 Hydraulic_Pump_Class Package Specification V-50
Ada Unit 33 Hydraulic Pump_Class Package Body V-52
Ada Unit 34 Hydraulic_Pump_Class.Report_Symbols Separate Procedure V-53
Ada Unit 35 Hydraulic_Pump_Class.Update Separate Procedure V- 53
Ada Unit 36 Distribution_System_Class Package Specification V-56
Ada Unit 37 Distribution_System_Class Package Body V-57
Ada Unit 38 DlStleuthl’l _System_Class.Report_Symbols Separate Procedure V-358
Ada Unit 39 Generic_Reservoir_Class Package Specification V-39
Ada Unit 40 Generic_Reservoir_Class Package Body V-60
Ada Unit 41 Generic_Reservoir_Class.Report_Symbols Separate Procedure V-6l
Ada Unit 42 Valve_Class Package Specification V—62
Ada Unit 43 Valve_Class Package Body V-63
Ada Unit 44 Valve_Class.Report_Symbols Separate Procedure V-—64
Ada Unit 45 Elec_Sys_Intfc_Defs Package Specification V-65
Ada Unit 46 Hyd_Control_Panel_Intfc_Defs Package Specification V-66
Ada Unit 47 Hyd_Sys_Intfc_Defs Package Specification V-67
Ada Unit 48 Hydraulic_System_Partition Package Specification v-10
Ada Unit 49 Hydraulic_System_Partition Package Body v-70
Ada Unit 50 Hydraulic_System_Partition.Create_Data Separate Procedure v-73

Ada Unit 51 Hydraulic_System_Partition.Hold Separate Procedure
Ada Unit 52 Hydraulic_System_Partition.Initialize_Model Separate Procedure
Ada Unit 53 Hydraulic_System_Partition.Initialize_Outputs Separate Procedure
Ada Unit 54 Hydraulic_System_Partition.Process_Mailbox Separate Procedure

Ada Unit 55 Hydraulic_System_Partition.Register_Io Separate Procedure
Ada Unit 56 Hydraulic_System_Partition.Report_Symbols Separate Procedure
Ada Unit 57 Hydraulic_System_Partition. Run Separate Procedure
Ada Unit 58 Hydraulic_System_Partition.Self_Init Separate Procedure
Ada Unit 59 Hydraulic_System_Partition.Set_Up Separate Procedure
Ada Unit 60 Hydraulic_System_Partition.System_Init Separate Procedure
Ada Unit 61 Hydraulic_System_Partition. Term Separate Procedure

Ada Unit 62Hydraulic_System_Partition.Update_Hydraulic_System Separate Procedure . ..

V-85
Ada Unit63 Hydraulic_System_Partition.Update_Inputs Separate Procedure
Ada Unit64 Hydraulic_System_Partition.Update_Outputs Separate Procedure

Ada Unit 65Hydraulic_System_Partition.Update_Press_Components Separate Procedure . .

V-88
Ada Unit 66Hydraulic_System_Partition.Update_Supply_Components Separate Procedure .
Ada Unit 67 Orvc_Common_Types Package Specification V-91
Ada Unit 68 Orvc_Defs Package Specification V-91
Ada Unit 69 Hydraulic_System_Defs Package Specification V-91

V-74
V-74
V-74
vV-75
V-78
V-81
v-81
V-81
V-82
V-84
V-84

V-85
V-86

1. ABSTRACT

The Space Station Verification and Training Facility (SSVTF) is using an object—oriented design (OOD) meth-
odology for software design, a rate monotonic scheduling (RMS) and message passing system called "Simu-
lation Virtual Machine” (SVM) to support the highly distributed execution environment, and the Ada language
to implement most of the software. This architecture document specifies how the Ada language will be used,
in general, to support SVM and implement OQOD. Itwill define the Ada structure of "classes”, "class instances”,
"algorithm packages”, "partitions”, and many other architectural elements of the system. It will give guidance
on ways to decompose requirements into the various Ada structural elements. It will show how communica-
tion is implemented between objects at different levels of the software design (class instances, partitions).
It will also specify how the simulation will model the required real-world space station communication and
simulation requirements for specific types of interfaces (i.e., 1553, discretes, interfaces to real and simulation
hardware).

This document does not detail the specific design of various models in the simulation — it simply (importantly)
defines the infrastructure which all the simulation models are built from. Adhering to the concepts and tem-
plates in this document will support a consistent architecture across the program assuring that Ada features
are used logically and within reason. This architectural specification will support the development of a quality
product through consistent design, early analysis and documentation of the "big picture” requirements. It will
also be the common location to document general architectural issues and solutions.

This document can be viewed as a software developer's users guide. The following describes the basic steps
in implementing the real—time Ada architecture. Several steps should be done concurrently (1 ..3,5..7). These
steps represent the general flow to implement the architecture — not a cookbook. Iterative and vertical slice
development are highly encouraged.

1. Identify solution—space objects and classes via OORA and iterative development.

2. Determine how the class instances will be grouped (composition, inheritance, ASM, partition). Define the
rate that the partitions will execute.

3. Identify all external interfaces (input and output) to the partitions.

4. Start implementing classes by copying the templete provided in Appendix I and filling in model-specific
details (attributes, names, routines). Class structures do not have to follow the template exactly, but the se-
mantic structure defined by the templates should be maintained.

5. Start implementing partitions by copying the template provided in Appendix |. Supply mode routines for
the generic model and message variables for the messaging system.

6. Create interface definition packages owned by the partition. Find / coordinate other partition's interface
definitions.

7. Create a "nominal” partition that drives default messages and executes at the required rate. No model
code executes in a nominal partition, only the partition shell. Time burners and memory allocators should be
defined. This shell will be used by others for unit testing and load analysis. More information and an example
of a nominal partition will be provided in future documentation.

8. Develop DIS packages as required. Identify terms for datastore, safestore, 10S look, 10S enter, and I0S
malfunctions. Add partition code to register DIS terms.

9. Refine "Process_Mailbox" procedure to handle DIS input terms (in partition body). Note option to process
or "stuff” variables.

10. Refine mode routines, interfaces, and other partition / class structures as the design proceeds.

hat is provi lopers:
1. Real-time interface packages shown in Appendix II. Developers use these packages to communicate
across partitions (Messaging), to execute partitions in real-time (Generic_Model), and to communicate with
the 10S and perform datastores (DIS).
2. Class and Partition templates shown in Appendix |. Developers may make a copy of the templates to get
a head—-start in the implementation.

2. DEFINITION OF TERMS

Abstract Data Tvpe(ADT): Normal implementation of a class. The class exports visible operations in a =
limited private data type representing the class state in the specification of the package. The body
of the class contains the operations. Classes never define variables outside the private type struc-
ture (no global data).
Abstract State Machine(ASM). Non-standard implementation of an object, sometimes using generics.
Also used to describe partitions and Operational Components. An ASM is an Ada package that
exports operations in the specification and defines state in the body.

Ada Main; A standalone procedure that WITHSs all partitions that make up a single executable for a single
cpu. The Ada main will not perform any processing or sequencing - this is done by the thread
executive portion of SVM. The Ada main is only used to bind together a set (any set) of modeis so
that they may be executed.

j - An Ada package that exports functions/procedures that perform simple operations
(like transcendental functions). No state data is allowed in this package - all data referenced are
formal parameters in the exported routines.

Aperiodic; An execution method (form of a thread executive) defined by the SVM "Ger c_Model” pack-
age that allows aperiodic updates within an RMS base rate. The updates can b« ggered by inter-
ruots or other events, and a predetermined max number of events can be handl: within the RMS
period. All processing must complete within the period time boundaries.

Asset: Any computer node or device on the RTSN such as 108, SNS, and CSIOP.
Batch; A transaction model that runs in background without any urgency in completion time.

C-Spec: Class Specification. Used in final phases of Object-Oriented Requirements Analyss. This doc-
ument represents a minimal specification of the requirements in an object—oriented fashion.

Class: “A set of objects that share a common structure and a common behavior. The terms class and

type are usually (but not always) interchangeable.” [Booch 91] Classes are modeled as Ada ab-
stract data type packages.

Composition: The creation of a new class by constructing it from other classes.

Datastore: A set of independent data items that is collected on demand and can be returned to models
as an initialization point.

ion): A method and set of Ada packages ~d structures that
associate logical names to physical variables for datastore, safestore. 5 look and enter, and mal-
function data. DIS is also used to uniquely identify partitions and partit.cn messages.

Generic Model: An SVM Ada package that provides the real-time execution capability for a partition.
Partitions instantiate either a “Periodic™ or "Aperiodic” thread executive from the Generic_Model
package to enable real-time execution.

GPLAN: A genera-purpose local area network for file download and non-time critical network opera-
tions between the OSS, I0S, and session computers.

Inheritance: The ability to extend the structure of a class, and possibly it's operations, to create a more
specialized component. it differs from composition because inheritance always resuits in a more
specialized version of it's parent class, whereas composition provides a more generalized abstrac-
tion.

Instance: *Something you can do things to. An instance has state, behavior, and identity. The structure
and behavior of similar instances are defined in their common class. The terms instance and gbject
are interchangeable.” [Booch 91] An Instance is the object created from an ADT class package.

Interface Agent: A partition that provides simulation or pass—thru for an asset. Asset add/drop and asset
management are also supported.

Interface_Defn: A "type” package that contains the definitions of messages output by a partition. 1t con-
tains no executable code. Use of this package enforces type checking and interface control be-
tween partitions.

Mailbox Message: A form of command and control, non—real-world interface message transmission on
the software backplane. This form is used primarily by the 10S. Mailbox messages are free—form,
non—typed binary messages (unpacker must understand algorithm of packer).

Many—to-One Message: A form of message transmission on the software backplane where a partition
defines the message structure for a message that it will receive from other partitions (in its interface
definition package). Many other partitions use the message definition to send message to the
single partition. Messages are queued. This is a special case messaging method to support parti-
tions who receive many identical messages from different senders.

Message Package: A SVM Ada package that is the interface to the software backplane for a modeler’s
partition. It provides services to register and attach input/output messages, and it provides put / get
operations for partitions.

Model: A general term to describe a simulation software model such as propulsion, orbiter, and inertial
sensor assembly. Models are codified into 1 or more Ada partitions.

Moding: Distinct modes which all real-time models operate in. Modes include freeze, run, hold, initialize,
etc.

Nominal Partition: A partition shell for an actual model which executes a null procedure and reads /
sends default messages at the desired rate. A time burner and memory allocator are implemented
for timing/sizing analysis (activation is optional). No class structures or model—specific code is im-
plemented. Basically, it is a shell that includes all the SVM hooks that are specific to the actual
model. Itis also used for by other modelers to provide active stubs of external partitions for unit
testing.

Node: A single computer assembly containing several cpus connected through shared memory and a
system bus.

Object: See instance.

Object-Oriented Design: The design process whereby the software architecture is organized around
meaningful gbjects, rather than functions.

One—to-Many Message: A form of message transmission where a partition sends a message and any
number of partitions may receive the message. This is the primary method of sending messages

on SSVTF.
Operational Component; Largest unit of documentation in the O~Spec. The approximate real-time

equivaient of the Operational Component is the Partition.

O-Spec; Abbreviation for "Object Specification™. This is the document that describes a Clin terms of an
object oriented perspective.

Partition: A self-contained code unit encompassing a single thread executive. It is an ASM that exports
nothing in the package specification. It internally holds instances of classes and iterates them cor-
rectly. Internally, it uses Ada parameters to pass data between class instances. Externally, parti-
tions use an SVM message scheme to communicate. Documented as an Operational Component.
Note that 1 or more partitions may represent a single documented operational component and
vise—versa. The general code size of an Partition will be from 5 to 20KSLOC.

Periodic: An execution method (form of a thread executive) defined by the SVM "Generic_Model” pack-
age that provides periodic updates at a specified hertz rate. All processing must complete within
the period time boundaries.

Rate—Monotonic Scheduling (RMS): A non-frame—based scheduling approach where models execute at
a periodic rate for a specified worst case time. Each model runs independently ~ RMS algorithms
assure models will meet their iteration rates.

Real_Time Model: An application model that simulates a rea-world structure, assembly, or function and
iterates over a pre—defined time interval at a specified rate. The model's effects appear to be run-
ning *in normal human-perceivable time” — not faster than normal, not batch. Real-time also in-
cludes potentially fast processing to simulate missing hardware boxes — other real hardware would
not know the difference. -

RT LAN (RTSN); A real-time local area network (FDDI) for high—speed network communication between
assets for a training session. R

Safestors: A set of time-dependent data sent by models and captured during RUN at specified intervals. e
The data is used to recover to the safestore time if reguired.

Selector: A function in a class ADT that returns an attribute value (state variable) of the class.

Session; The main computer(s) and simulation program that run the simulation. The IOS, SNS, OSS,
and CSIOP computers are not part of the session computers.

Simulation Virtual Machine (SYM). The SSVTF executive structure that provides an RMS-based execu-
tive and a messaging system for the distributed operating environment

Software Backplane; A term used to describe all the SVM software components that are involved in the
transmission of messages between partitions, cpus, nodes, and assets. It is a passive structure
that "wires together” the partitions and provides communication capabilities. The backplane pro-
vides several message transmission methods (1-to—many, many-to-1, mailbox) and time—consis-
tent data transfer for the entire SSVTF.

Simulation Stata: The state of the simulation (not mode). There are 3 states pre—session, active, post—
sessior. in these states, nodes are:
pre—:ession — loaded, connected, waiting for something to do (asset)
session active ~ part of session (asset)
post—session — disconnected from session (asset)

A nucleus is a training session with at least the RTSC with an I0S and optional Data Management
System (DMS) string.

State: Any persistent data defined by a class or partition. State is defined by a class’s private type and
exists in the instance of the class. State may also exist in the partition’s body. Messages between
instances or partitions are reflections of the state, not the state itseif (no global data). State is modi- P
fied by normal iteration of the model or by "request state change” calls to modify state (such as in- A=
sertion of malfunctions).

Thread Executive: A SVM component that gets created when a partition instantiates the "Generic_Model"
packages. This component sequences the partition's mode routines at the appropriate time. Itis
the threa= »f control of a partition. There should be only one created per partition.

Iransaction M: .2[; Non-periodic, event driven processing that spans indeterminate time spans. The
model may need to run quickly to emulate real-time data streams, but it is not periodic.

Vertical Slice: A code implementation where a developer implements a narrow design slice from top
(partition / interfaces) to bottom (class structures / instances) to prove out the design concept
(structure, timing, overhead, algorithm organization / implementation, etc.)

(

3. OVERALL ARCHITECTURE

The SSVTF Ada software architecture must support a general distributed hardware environment. Figure 3—1
shows the general SSVTF hardware architecture with two session computers and the various non-session
assets connected via the RT LAN (the CSIOPs, I0Ss, Visual, etc) and the nodes on the GPLAN (0SS, 10S).
Also shown are the muitiple cpus per node and multiple nodes per session computer system. Cpus communi-
cate in local memory, nodes communicate via reflective memory, and other assets communicate on the RT
LAN.

RT Simulation Network

Session B

Session A MEMORY

Reflective
Memory

1

108 0SS
Computers J| Computers

CSIOoP
Computers

Node1] [Node2] [Noded] [Nodes PROCESSING
ool |oof |00 (oo STORAGE

ool loo! ool |oo

i—‘;:f;:!‘:] F::;::_;: if.\;.,::;‘] E‘:.":‘l
VME
Adapters
* NOTE:
SIB B Each Session will contain from (1) to
Sub- (N) nodes. Each node will contain (1)
units to (N) CPUs.

Figure 3-1

Each SSVTF software model is decomposed in an object-oriented fashion based on real-world structures
and assemblies. Object—oriented means that data and the data’s associated operations are grouped into
"class” structures. A class structure encapsulates the hidden portion of the object’s attributes and operations

5

and exports the data type that abstractly represents the object and the valid operations. The class structure
on SSVTF is implemented as an Ada abstract data type (ADT) in the form shown in Appendix |, 7.1._An "ob-
ject” is created when an "instance” of the class abstract type is declared. The class should represent real-
world "objects” to the greatest extent possible. Classes/objects are initially defined during the Object—Ori-
ented Requirements Analysis (OORA) phase.

Class structures may be made up of other classes by declaring instances of lower—level classes in the object-
attribute record of the higher—level class. If the higher level class represents aless abstract form of the lower—~
level class, then this structure is defined as "inheritance”. If the higher-level class represents an assembly
where the lower-level classes are sub—parts of the higher level class, then the structure is called a "composi-
tion”. In most cases, composition structures will be used on SSVTF. The depth of the hierarchy of classes
is dependent on the particular model — one to three levels are common.

At some point in the hierarchy of classes, something must define instances of the highest-level classes.
There are three possibilities in Ada - an Ada main program, a task, or an abstract state machine (ASM) pack-
age. On SSVTF, the top—level Ada architectural decomposition structure for a mode| will be an abstract state
machine (ASM) package called a "partition” (template in Appendix I, 7.3). The partition performs two types
of functionality — (1) defines the state of a model and sequences the mode! over time; (2) connects the model
to the real-time distributed system interfaces.

The state >f a model partition will be located in the package body of the partition. It will primarily consist of
instances of classes. Since the partition is an objectitself (and an ASM), it may also contain non—class related
variables defined in the partition body. This data is either “temporary” data required for transformations of
external data into data forms required by the classes, or it is real state data that persists cycle to cycle. In
general however, class instances should contain the state of the model, not the partition. The partition defines
the instances and connects and iterates the instances of the class structures. Instances of classes are con-
nected via procedure calls and parameters.

The real-time system interfaces include a generic thread executive that provides a periodic RMS task to cycle
the model (partition) at a given rate, a messaging system that allows partitions to communicate in a distributed
environment, and the Distributed Identifier Specification (DIS) which provides the association of logical
names to physical data variables for I0S display/manipulation and for datastore/safestore.

The real-time system services provide a virtual machine on which models (partitions) execute. These ser-
vices support a distributed Ada environment. Fig. -2 shows the topology of the system with respect to
models. Each model exi=“2in aself-contained str. ‘= denoted as the partition. Externally, partitions inter-
face through the softwa. ..ackplane via the packaye "Message®. The backplane provides the messaging
capability on the multi~cpu, multi-node distributed system. The backplane also allows the partitions to be
very decoupled. The interfaces (messages) between partitions are defined by the "Interface_Defn" Ada type
packages shown. These packages contain records defining the format of messages sent between partitions.
This structure allows the Ada compiler to verify that interfaces have no inconsistencies. The messages are
therefore defined using normal Ada constructs and then sent as messages via the software backplane to other
partitions. At the bottom of the figure, the "DIS” (distributed identifier specification) is used to map logical
names to physical variables for the purpose of IOS display and datastores.

It
ﬂ\

|

)

_ Software Backplane

mssaM-..-....'." ------------ —5.--..-_-___.-..__--..‘

N4

; "Intfc_Defs” Message Ada Type Packages K

/ 00O0OOO0OO0000O0
.. 0000000000000000

" * aae
- L

~ -
ey mer e B E e W, L S
-

All modelis call. IR R P

Model Model Model Model
(Partition) (Partition) (Partition) (Partition)

All models
register.

KEY:

Modeler Code: I

DDDDD."\ Exec. Code:
0000000 ¢

" ---

FIGURE 3-2

The following discussion explains the various parts of a partition. Reference the code templates in Appendix
| for specific detail on code structures and actual implementation.

Figure 3-3 shows the various structures related to a partition. The large box labeled "Partition” represents
an Ada package ASM. In the body of the package (hidden from external view) are the instances of classes
(objects), local variables, and local subprograms. At the bottom of the page are the "class” packages that
are used internally by the partition. The code template for class packages is shown in the *Class Template”
section of this document. On the lower right side of the partition box, the "Thread_Exec” is shown. Thisis
the SVM distributed executive that is an instantiation of the "periodic” package defined by the "Generic_Mod-
el” package (see appendix II). The partition supplies the mode routines during the instantiation. The thread
exec executes the mode routines at the appropriate times. The two "Intfc_Defs” packages at the top are Ada
type packages that define the messages that are produced by partitions. "External_Intfc_Defs” defines the
messages of another external partition, and “Partition_Intfc_Defs" defines the messages owned by this parti-

7

tion. By WITHing in interface definition packages, a partition gains the type—checking features of Ada and
the exact specification of the interface messages. They can be thought of as mini—interface control docu-
ments between partifions. The interface definition packages contain no executable code — only type struc-
tures. Inside the partition body, variables are declared using the interface definition package and the "Mes-
sage” package. These variables are used to send and receive messages. The code template for this set of
modules is located in the "Partition Template” section of this document.

| | Partition Object Communication:
Within a partition, normal Ada language constructs are used to attach, iterate, and communicate data be-
tween class instances. Associations {(message passing) between classes are done in a vertical faghion.
Class structures themselves do not laterally invoke routines of other class structures primarily because the
instances of the classes are not "known" by the classes themselves. A higher order module must create the
instance and provide the associations between the instances. The class structure does not "know"” or have
access to instances of other class structures, so a class calling another class’s exported routines is rendered
impossible by the imposed structure (ref. class template). Note that this does not apply to class compositions
or inheritance structures. In compositions and inheritance, the instance of a superclass is defined within the
state definition type of the subclass. A call to the subclass can then update the superclass instance.

As shown in figure 33, instances of class structures are declared in the body of the partition. The partition
provides the mode routines that iterate the instances of the classes.

Partition

Partition Intfc Defs

outine A
outine B

object_1
/ ob]oct_z\

mode routines

”

-

Setup
Create_Data
Self_Init
System_lqit
Run]
Freeze

Hold
Term

External Intfc Defs

b
Y —— —
.

DIS

Algerithm_Pkg
—_—

Routine 2
| KEY:
Modeler Code: |
B Fle,"Ch“ <obj>_Class —
Create [Exec.Code: |
[Request_Change | Teate
pdate "Roquest_Change |
[Select Opdate]
/Z \
<obj>_Class \ <obj>_Class
C o
[Craata e ange
 Bequasat_Change pdate
Select
Select
|
FIGURE 3-3

Figure 3—4 shows the local area netwo

rk, interface agents representing the LAN nodes, and the SVM parts.
~ Interface agents simulate LAN nodes when the node is not active or they pass data through from the LAN
interface to the other models if the node is active. They will be discussed later in this document.

9

Station Shuttle
Network Mission
USAV Simulator Simulator 10S 10S
{CSIOP) (SNS) (SMS) [—-
Asset Assst — l_‘,
Asset K Asset
’ RTSN
‘

GPLAN

Oper.
Support
System
(0SS)

GPLAN

Asset

10S

Interface
Agent

"Look" requests.

Partition

(Model)

ass

10

f:g::’fa aszzgara Interface data
: from assets.
us SN Orbiter 0SS
Interface Interface Interface interface
Agen nt A
Command and
Simulated (or) Control
pass—thru data.
Massdge ' Note: Message definitions
defined by Intfc_Defs Ada
type packages.
Partition Partition
| (Model) (Model)
obj : Class;
ass ass | ass ass |
Al models register
real variables with
DIS logical names.
Fafuun/u)N
/ 0oodg ™
0000000 ;
*QIS.Qefigtion Packages:
__

1

“

(‘;

4. REAL-TIME SERVICES

The real-time services include the following:

Moding and Control

RMS—based scheduling {thread executive)

Simulation Clock

Messaging System (1-to—-Many, Many-to—1, Mailbox)

Distributed Identifier System (DIS) (for IOS and Datastore/Safestore Variables)
Datastore and Safestore Operations

Device Drivers

Architectural constraints (partition, messaging, DIS, interface agent)

Executive, moding, the messaging system, DIS, datastore/safestore, and interface agents are discussed
below.

N AN

4.1. Generic Model (Model Executive Interface)

In order to execute a model in real-time, the model partition must use the SVM package "Generic_Model”
to obtain the reai-time scheduling services. This package specification is shown in Appendix II, and its use
is shown in Appendix | under the section "Partition Template™. Figure 4.1-1 illustrates the executive software.
The Generic_Model contains two generic subpackages "Periodic” and "Aperiodic”. Both are RMS scheduled
which implies the allocated CPU time for the model is based on the period time and period rate. Partitions
must run within their max period time otherwise period overruns will occur and simulation will be stopped.

The rates supported in the "Generic_Model" are described in the "Periodic_Type™ and "Aperiodic_Type"
enumeration values. SVM is notlimited to these rates, but the rates being supported are shown here (if other
rates are needed, they can be added). Note that whole (non—fractional) hertz rates are used since itis desired
to have a repeating major cycle every 1 or 2 seconds. Fractional hertz rates would complicate mode
transitions since the entire system must wait until the end of a major period when changing modes. Rates

“supported by SVM are to facilitate modeling the real world or to support interfaces with real world components

in the simulator, and in following the guidelines of RMS, do not have to be harmonic. When data is shared
between models executing at different rates that are not harmonic, the data consumed will appear to be

node

L CPU cpu CpU
FIGURE 4.1-1 Executive Software

11

produced in irregular and disproportionate intervals. The modeler should be aware of the relationship
between the producing and consuming partitions when choosing execution rates.

Instantiation of the "Periodic”™ package results in a thread executive for the partition that runs the partition’s
mode routines cyclically at the requested period (expressed in hertz). The modeler supplies mode routines
in the partition body and uses them to instantiate the thread executive package. The mode routines include
setup, create_data, self_init, system_init, run, freeze, hold, and terminate. The mode routines are explained
in section 42. The modeler aiso provides the required rate and the name of the partition during the
instantiation. The name is used to identify the partition if problems are detected. An optional parameter is
available to specify the partition task’s stack size; a larger stack is necessary to correct Storage_Errors for
memory-intensive computations. The number of DIS terms that are anticipated to be retrieved from the
partition is specified in the parameter, Max_DIS_Terms. This is used to distribute partition processing across
execution frames. During execution, the thread executive will call the various mode routines, then process
requests for retrieving the DIS term values.

The generic Thread Exec package contains subprograms which can be called to obtain characteristics of the
instantiated executive software. Two functions, "Delta_Time" and "Rate_Of_Execution”, provide the modeler
with information concerning the characteristics of the thread exec. *Delta_Time™ is exported by the
instantiated Periodic package and provides time representing the interval time in seconds of the period (10
hz = 0.100 seconds in all modes except in freeze when 10hz = 0.0). This time should be used when updating
the model and calculating integration ‘constants.’ "Rate_Of_Execution” returns the execution rate; the same
as the generic parameter supplied at the time of instantiation. This function is to be used when supplying
information to the software backplane. The function "A_Full_lc_Is_Required™ provides information
concerning the type of system initialization conducted (refer to section 4.2.2). A call to this function is made
from the self-init procedure. "Ready_To_Transition" is called by the partition when it completes certain mode
transitions (refer to sections 4.2.1 through 4.2.4). This signals the master executive that the partition is ready
to change mode if commanded. The procedure has an optional parameter that allows the Self_Init procedure
to continue cycling when itis setto true. The two functions G_M_T and S_G_M_T return GMT time and SGMT
time. The time returned is relative to the period of the partition (if the partition runs at 10 hz, GMT will tick in
a 100ms interval). GMT or SGMT should only be used if required — models should use Delta_Time for
propagating state.

Instantiation of the *Aperiodic” package results in the creation of a thread executive for the partition that runs
the partition’s mode routines in a periodic time reference but activated on an event. The generic formal
parameters are similar to the "Periodic™ package with the addition of "lterations™ and "Vector”. "lterations”
defines the maximum = ~er of times the aperiodic scheduler may run in a given period, and "vector” is the
method to attach anint- :tor event to the aperiodic scheduler. This scheduling method is still RMS-based
which means that a wc: - ase time per period and period rate are required. Worst case time is computed
as the period time per iteration times the number of iterations allowed. The partition must honor the RMS
periodic scheduling time intervals (it cannot run as a transaction model).

Instantiation of the "Asynchronous” package creates a thread executive for the partitions that are non-rate
based; these partitions execute in a CPU dedicated to asynchronous activity within an asset. These partitions
run only when needed, to support the real-time simulation. The generic formal parameters are similar to the
"Periodic” package with the substitution of "Delay_Time" for "Rate”. "Delay_Time" is the amount of time to
wait before the partition is allowed to execute again. This scheduling method is not RMS~based; all
Asynchronous partitions will run at the same priority and execute when CPU time is available. These
partitions will not execute in synch with the Periodic partitions. Typical partitions of this type include those
buffering real-time data for collection/display, and those reading or writing to disk.

Package "Clock” is renamed and USEd in the thread executive so that the partition can have access to all
the binary operations on "Time” in simulation clock without having to WITH Simulation_Clock in the partition.
Time retrieved from the Periodic functions for GMT and SGMT will reflect time at the start of the partition’s
period. Aperiodic partition time reflects the start of the last period that has started. No accurate time can be
guaranteed Asynchronous partitions, so the function is not available. Time is available from a message
broadcast by SVM on the software backplane {20hz resolution). This time can be used for low—fidelity time
requirements (since there will be inherent delays from the time the sender generates the time and the recelver

reads it).

12

(

4.2. Simulator Moding

The various software modes that will be used in the SSVTF are described below. Following this discussion
is a pictorial representation of mode transitions (figure 4.2-1). Note the shaded area of the diagram
represents modes in which partitions execute in a one—pass manner and overruns are notdetected. Inthese
modes, partitions will not be called repeatedly by RTSSW software in order to complete their processing.
Partitions have as much time as needed to complete processing and are therefore not considered executing
in "realtime™. (See section 7.3 for templates of the mode procedures).

Included at the end of this section is a discussion detailing the various States of the Training Session, and
the States of an Asset. Figures 4.2.10-1 and 4.2.11-1 pictorially represent these transitions.

LATION S

et—-up
horation re?(l’ster

abort abort

sny un recov
pxcepton) oy

take s
datastore

“May

detected in

<> Supplied by Partition - required for generic Instantiation required by some partitions

D Supplied by RTSSW grouping
" Overruns not detected
for modes within

FIGURE 4.2-1 Mode Transition

13

4.2.1 Simulation Set-Up

4.2.1.1 Register /O / Set-Up
o SetUp
ee Partitions create objects (class instances) as required
ee Partitions connect addresses to DIS term identifiers and 'prefix’ information to
component identifiers (see section 4.4 for details).
se Partitions connect Dis identifiers to symbol name(s) for each term to be
displayed by 10S by calling Dis.Connect_Term.
¢ Register VO
«s Required by partitions needing to communicate with other partitions and
receive mailbox messages

ss Partitions register or identify their input and cutput messages with the
RTSSW communication software. This allows the communication routing
tables, which ar necessary for the communication to take place, to be set up.

s Mailbox creation is also performed in this routine for Partitions requiring
mailbox communication.

4.2.1.2 Create Data
Create_Data is the second phase of the partition to partition communication set up.

¢ Partitions provide the necessary information to the RTSSW communication
software in order to create their communication (message) buffers.

s Partitions must then initialize these buffers (Only One_To_Many output
messages) by setting all output messages to defauit values.

es This activity sets up the message buffers used by the RTSSW
communication software in order to pass messages between partitions.

s Platform Manager partitions populate and send a registration message to the
Training Session Manager.

*¢ Included in the message is the platform’s worst case transition time for the
run to freeze and freeze to run transitions.

4.2.2 Initialization

There are two forms of initialization, a "full Initial Condition (IC) reset” or a "state adjustment™. The full IC form
of initialization occurs when an initialization point, return fo datastore or return to safestore is requested from
the 10S. Also, the automatic initialization that occurs following the Start—up phase is considered a full IC.
Initialization that occurs following a request to perform a step—ahead is considered the state adjustment form

of initialization.

4221 FullIC
The purpose of the Full IC initialization is to allow the simulation to be reset to a new starting point. For
example, if a return to datastore or new initialization point is requested by the 10S, the simulation transitions
into a HOLD mode in which the partition's execution is temporarily halted. The following steps are taken in
ords 1 start over.
» Once Initialization is entered, RTSSW reads the initialization values from disk
and loads them into the various partition mailboxes. Read Init Data phase is now
complete.

o The simulation automatically enters Seif_Init.

14

mﬂ |

Partitions reset their internal state to default values, (predetermined safe starting
values).

Partitions will read their mailboxes and set their internal state to the values
supplied and/or ramp their models to the desired state. Self-Init is now
complete.

4.2.2.2 State Adjustment

The State Adjustment initialization is used to perform a system Step Ahead. The Environment partition will
receive a point in time in which to step ahead, while other Paritions receive new values in which to set their
internal states. The key difference between this initialization and Full IC is that the internal state is not reset
1o default values. The new internal state values, provided through mailbox messages are simply applied to

the existing internal state. The following steps are taken to perform a State Adjustment.

RTSSW is notified by the 10S to perform a Step Ahead. This causes the
simulation to transition into the Initialization instructor mode.

Because this is a Step Ahead, the Instructor is involved and is responsible for
providing the Step Ahead time as well as any state change values that may be
applied to various partitions. - o S

The 10S is requested to send all state change data to the various partitions. 10S

notifies RTSSW when complete. The Step—Ahead/Scripting Data phase is now
complete.

The simulation now enters Self_Init.

Partitions read their mailbox messages and will perform whatever tasks they are
instructed. Mailbox messages may include information pertaining to the time to
step—ahead, and/or new state data information.

es Partitions needing to perform a step ahead will provide a routine to STEP to

the new point in time inside their Self_lnit procedure. Step ahead may not be
completed in a single pass in which case the partition would be responsible
for controlling it's internal execution until the desired point in time is reached.
Partitions will execute until completed and are not considered running
iteratively. o

Self-Init is now complete.

4.2.3 Self Initialize

A function will be called in the self—init procedure that will identify if this will be an
IC reset or state adjustment self—initialize. The logic of the Partition's self_init
procedure must use this to determine how to process the mode request. See
section 4.2.2 for more information regarding the different initialization types.

Partitions may need to read their input data (messages) prior to execution in this
mode. If so they are doing so at their own risk. This may be old or inconsistent
data for what they are trying to do in this mode.

Full IC reset — the Partition's internal state is cleared to some predetermined
starting state.

ee Partition reads its mailbox for new internal state values and applies them to
the internal state

State Adjustment — a Step Ahead was requested by the 10S

e+ Partitions will extract receive the target step ahead time via the generic
model "S_G_M_T" function call

e¢ Partitions may also receive some state change information via the mailbox

15

ee Env will advance to the target time and then apply any necessary state
change information to the internal state

es Other partitions may receive only state change information — and will apply it
to the internal state

« Self Init will remain a one pass procedure. Partitions that need to iterate will do
so by executing until complete. Each partition will notify RTSSW when complete
by calling the Ready_To_Transition procedure.

4.2.4 System Initialize
During System Initialize, partitions initialize with each other (both within an asset and between assets in a
session) via their System_lnit procedures.

e Partitions use the messaging system in order to pass data to other Partitions
allowing values to be ramped and achieving a steady state for the simulation.

« Ready_To_Transition is called by the Partition when it has determined it's internal
state is steady and at the appropriate values in order to begi~ the simulation.

When all Partitions have successfully initialized, the session will automaticaily transition to freeze mode. Note
that System_lnit is an iterative procedure running at the rate of the partition, i.e. deita time is equal to the
partition’s period time. The RTSSW executive software will detect overruns in this mode.

4.2.5 Freeze

Freeze mode is an iterative procedure in which RTSSW will detect overruns.

o RTSSW sets deltatimeto 0.

* Class structures should be able o run with a dalta time equal to zero of greater.

» Partitions will execute a procedure that takes the deita time change into account.
Two methods to accomplish this:

es Partitions may use their existing RUN procedure if it is able to take into
account the reset of delta time.

e Partitions must supply a unique FREEZE procedure if special processing
must be performed due to delta time being set to zero.

Messages will continue to be sent, received, and responded to by the partitions. Malfunctions will be held
at the 10S until the Freeze mode is complete.

4.2.5.1 Asset Add

Prior to attempting to add an asset, the asset will have completed the PROGRAM ELABORATION,
SETUP/REGISTER /0, and CREATE DATA steps. An asset may be added while the session is in Freeze,
or Run mode.

When adding an asset during run mode, one-way communication is established with the asset prior to
passing data. Data s then passed to the asset so that it can initialize itself with the ongoing simulation. When
everything is synchronized and it is time to join the asset to the simulation, the communication becomes
two-way and the interface agent acts as a pass-through for the data transfer. The same basic steps apply
when adding an asset during freeze mode; however, a system initialization may take place after
communication is established. After all partitions have completed system initialization and checked in, the
simulation will automatically transition to freeze mode. Refer to section () for more information regarding

Interface Agents.
4.2.5.2 Asset Drop

An asset can be dropped in Freeze, Run, or Terminate mode. The interface agents are the only Partitions
with activity in this phase. They will receive the Drop command from the training session mode manager and

16

(

i

q

cease communication with the asset. The interface agent is now responsible for simulating the asset's
outputs rather than acting as a pass through for the asset.

42,6 Run

During run, partitions iterate with their period time equal to delta time via their Run procedure. Messages are
sent and received. Malfunctions and other commands will be entered and processed. Note that Run is an
iterative procedure. RTSSW will detect overruns.

4.2.6.1 Asset Add
Refer to section 4.2.5.1.

4.2.6.2 Asset Drop
Refer to section 4.2.5.2.

4.2.6.3 Safestore
Refer to section 4.6.

4.2.7 Hold

In HOLD mode, partitions are in a suspended state and not executing, therefore overruns are not detected.
This mode is used to process a Datastore or an Abort request. Hold will also be entered to initiate an
initialization. Mailboxes will be populated with data for initialization if appropriate, but will not be read until
Initialization is commanded by the 10S (that is when the Self_Init procedure is executed). Malfunction
information and messages will not be passed between partitions during this mode.

4.2.7.1 Datastore

When a datastore is requested, the session transitions from FREEZE to HOLD mode and RTSSW collects
all datastore terms that have been identified in the DIS. Taking a datastore in this manner ensures that a
time—homogeneous data set is collected. During Datastore, partitions are in a suspended state (Hoid mode)
and do nothing. Refer to section 4.5 for more information about Datastores.

4.2.7.2 Abort

Abort conditions are detected by RTSSW. These are severe conditions that will not allow processing to
continue. Due to the severity of this condition, the Abort detection must be processed immediately.
Therefore, this transition is not an orderly one. During other mode transitions, the simulation does not begin
executing in the new mode until all partitions have completed executionin the current mode. When the Abort
transition occurs, partitions are commanded to transition to a Hold or suspended state as soon as the
command is received (i.e., the next time they are released for execution). Partitions may not have completed
their processing in the current mode when they receive the new mode. The following steps describe the Abort
seguence:

o RTSSW detects an unrecoverable error condition and sends an Abort command
to the Training Manager.

» Upon receipt, the Training Manager issues the Abort to all assets. The transition
to Abort (actual transition to HOLD mode, the partition’s are not executing) is
processed immediately and is not dependent upon the OBCS's requirements for
advanced notification of mode transitions. This disorderly shutdown may cause
the OBCS to be placed in an unstable state.

¢ Partitions will each complete their current period’s execution and then transition
to Hold mode.

o RTSSW will then receive a command to initialize either through a return to data
store point or initialization point. However, the error condition may be deemed

17

too severe to attempt a recovery. in this case, RTSSW will receive a commar
transition to terminate. [n either case, RTSSW will wait for further instructione

from the 10S.

oo RTSSW will read the initialization data and populate the partition’s message
buffers.

s Partitions will self initialize.
se The system will then Initialize and an automatic transition to freeze will occur.

4.2.8 Terminate

During terminate, assets are dropped, partitions complete execution, and the RTSSW executive and
communication software gracefully ceases execution. Each partition provides a Terminate procedure which
shall allow for a graceful termination of that partition. Note that Terminate is a one—pass procedure. The
RTSSW executive software will not detect overruns during terminate.

4.2.9 Run To Freeze Transition

s Therequest to Freeze isissued by tr)OS to RTSSW.

o Training Session Manager compute: 2ased on the registered worst case run to
freeze transition times (See section 4.2.1), the earliest point in time the simulation
can transition to freeze.

s Training Session Manager commands the Platform Managers to transition their
Mode Controllers in each CPU to Freeze

s¢ The time to transition is included in the command to the Platform Managers.

« When the time to transition is reached, the simulation will transition to the new
mode.

Ovals represent procedures that the partition developer will provide when the generic model is instantiated,
while the explosions represent special case processing in which only a few partitions may need to supply
procedures. (Note: these procedures will not be required for the generic instantiation.) Rectangles represent
software that RTSSW is responsible for providing and clouds represent logical groupings of activity.

4.2.10 States of a Tralning Session

Figure 4.2.10-1 denotes the states of a training session: null, session nucleus, and target session active.
A training session starts out as null; that is, no session exists. Before the OSS attempts to establish a new
training session, several things are assumed to be established. 1) The Session Computer (SC) operating
system will be configured for simulation and loaded into the correct CPU's. 2) A SaC process will be running
on the SC and will send status information to the OSS computer. (This information will be used to determine
the availability of the SC for configuration into a training session.) 3) The OSS is responsible for down-loading
the training files into the correct machines. 4) The executable code is brought up on the SC in the correctly
configured CPU's.

When a new training session is desired, the OSS first determines the availability of a session computer (SC)
with its associated Data Management Set (DMS) string and at least one Instructor Station. Then the OSS
directs the SC to establish a new training session with its DMS string and the available instructor station. If
communication between the SC and its DMS string or between the SC and the Instructor Station cannot be
established, the training session Is not established (training session remains in the null state) and the three
assets remain available for configuration into another training session. When the training session is
established, it transitions from the null state to the session nucleus state. While in this state, it may
commanded by the OSS to add or drop other assets as required to form the desired hardware configuration
for the training session. When the OSS detects that the desired hardware configuration has been reached,
itcommands the training session to transition from the session nucleus state to the target session active state.
At this time, command and control of the training session is passed from the OSS to the Instructor Station(s).

18

G

N

TARGET

ESSION ACTIVE)

Target Configuration
No Session Active

Assets are standaione ASSET
o OSS establishes a new o 0SS determines when DROP
Session, and requests the Target configuration
Asset Adds for SC, is reached.

DMS, and 1108, as
appropriate, 1o establish
the Session Nucleus.

o 0SS determines when
the Nucleus configuration
Is reached.

Figure 4.2.10-1 Training Session States

While in the target session active state, the training session may be commanded by the OSS to add or drop
assets. .

4.2.11 States of an Asset

Figure 4.2.11-1 provides the states of an asset: maintenance, pre—session, session active, and
post-session. While in the maintenance state, tests and checkout procedures (and other activities involved
with off—line testing) are performed on the asset's hardware. When the OSS detects thatthe asset's hardware
is operational (on-line), the OSS transitions the asset from the maintenance state to the pre—session state
(ready-to—load substate).

An asset will remain in the ready—to—load substate until it is required for configuration into a training session.
When the OSS has successfully loaded and started the asset, it transitions from the ready—to—oad substate
into the loaded—and-ready substate. In this substate, the Asset sends out an Up_And_Ready message to
the OSS, following completion of Simulation_Setup Processing. This notifies SaC that the Assetis ready for
configuration instructions. Next, the asset awaits for a Create_Session command from the OSS. When the
0SS commands the asset to create a training session, the asset transitions into the session connect substate.
While in the session connect state, the Training Manager for the asset performs the necessary processing
to create a training session then notifies Sac that it is Ready_To_Configure meaning the Asset is now ready
to add assets to its established training session or to be added to another training session. In either case when
communication is established between an asset and the training session, the asset transitions from the
pre—session state (session connect substate) to the session active state.

While In the session active state, an asset provides services that make it worthy of being configured in the

training session. An asset's responsibilities vary between assets. During session active state, an asset may

transition between many different modes (such as Initialization, Run, Freeze, Hold, etc.). Also, the asset may

receive an asset drop command from the training session (training session manager). Upon reception of an
[asset drop command, the asset performs processing that will remove it from the training session.

Upon completion of the asset drop, the asset transition into the post-session state. During the post-session
state, the OSS saves asset-resident data which were created during the training session. Other activities

19

!

| MI

SESSION ACTIVE
STATE

PRE-SESSION
STATE

READY LOADED
~ TO LOAD AND READY

MAINTENANCE POST-SESSION

STATE
STATE 2
Figure 4.2.11-1 Asset States
may also occur du g post—session state, depending on the requi “ments of the asset (such as running the
0SS Productivity Monitoring Tool at an Instructor Station). Wren all post-session state activities are
complete, the asset transitions from the post-session state to the pre-session state (into either the
ready-to—load substate or the loaded—and-ready substate).
—

20

4.3. The Messaging System

There are four types of communication which are supported by the communication mechanism (software
backplane), see figure 4.3—1. The firsttype is one producer sending to one or more receivers (one—to—many).
This is the normal method for modeling real world interfaces (wiring, plumbing, talking, etc.). In this type of
communication messages are queued in rate based queues to insure that the receiver will receive time con-
sistent messages based upon the relative exxecution rates of the sender and receiver. For example, if the
receiver runs four times as fast as the sender, the receiver will receive every message sent four times. If the
receiver runs one fourth as fast as the sender, the receiver will receive every fourth message sent. Even if
the sender and receiver are not running at harmonic rates, time consistent messages will be received.

The second type of communication is many producers sending to one receiver (many-to—one). This is aspe-
cial case and should only be used by select systems (ENV, OBCS, EPS). Systems using the many-to—one
interface will have to compute worst case message bursts for queue limit setups. In many-to—one commu-
nication, messages are queued in a FIFO queue to insure that all messages sent to the receiver will be re-
ceived independent of the rate at which the sender and receiver execute.

The third type of communication is remote communication. Itis used for messages that are sent to a remote
node. Remote communication is not used by partitions, it is used by interface agents, RTSSW software, and
a few special systems such as I0S which do not have Real-time Sessions Software running onthem. Remote
messages are also queued in FIFO queues. The one-to—many, many-to—one, and remote communication
routines are located in package Message (see section 8.2).

Users of the messaging system declare taypes for their message in an interface definition package. Pointer
types (access types) to each of the message types are also declared in this package. Partitions wishing to
communicate WITH the appropriate interface definition packages and declare local objects of the access
types for the messages they wish to send and receive. These local pointer objects will be registered with the
software backplane. The software backplane will control them so that they point to the appropriate locations
in the message buffers. Therefore, to send and receive messages, partitions just reference and de—reference
their local pointers; the data may or may not actually getcopied. Because messages are referenced by point-
ers, and because discriminants of a variant record referenced by a pointer cannot be changed, messages
cannot be variant records and receive the benefits of variantrecords.

The fouth type of communication is mailbox communication. Mailbox communication is a special slow rate
command and control messaging operation that is intended mainly for initialization, return to safestore, mal-
function requests, and 10S enter operations. Itis not encouraged as a general, partition to partition, commu-
nication mechanism. Mailbox messages are a stream of packed bytes that require packing and unpacking
of data by the senders and receivers. Itdoes not enforce Ada strong typing constructs. Itis up to the sender
and receiver to insure that they are using the same data types for mailbox messages. Unlike the messaging
system where senders and receivers must register for specific messages, mailbox messages are dynamically
routed. Each mailbox has a FIFO queue that holds incoming messages.

Partitions may have more than one mailbox. Each mailbox musthave a unique prefix. Prefixes are associated
with the owner of the mailbox through the DIS.Register_Component operation (see section 4.4.1). The mail-
box system currently supports six types of messages, return to safestore messages, return to datastore mes-
sages, malfunction messages, enter messages, mega messages, and user defined messages. The first five
types (safestore, datastore, malfunction, enter, and mega) are referred to as predefined messages because
they have predefined data types. The predefined data types along with their operations are defined in four
support packages: Safestore_Mailbox, Malfunction_Mailbox, Enter_Mailbox, and Mega_Mailbox. The mega
message is used for return to datastore messages. Ingeneral, mega messages are used to send sets of data.
These data sets may be logically related data items such as the x, y, and z values of a state vector which must
be received by the model at the same time, or they could be a group of related data items such as the terms
for a return to datastore. User defined messages are used for messages other than one of the predefined
messages. The mailbox communication routines are located in the package Mailbox (see section 8.3).

4.3.1 One-to—Many (Normal) Communication

The producing partition registers its output messages with the software backplane using the "Regis-
ter_To_Send_Msg"” operation during the Setup submode. During the Create Data submode, the producing

21

One-To—Man 0
y Rate Based Queue Partition
oV -
Partitlon Partition
o | partition
Many-To—One
Partition b O FIFO Queue
Partition Partition
Partitlon
Remote
lnAtorflee
t
FIFO Queue =
interface
Agent
Mailbox
Partition Partition
Partition

= Software
Backplane

@ FIGURE 4.3-1

~ partition calls "Create_Msg". If butfers for this message have already been created in the software backplane
the producers local pointers will be set to point to the message buffers. Otherwise the buffers will be created
and then the pointers will be set. After ~Create_Msg" has been called the receivers local pointer will be point-

22

ing to the first write buffer for the particular messages. The partition should also initialize its output messages
during the Create Data submode. This is done by updating the local pointers and then calling the "Put” opera-

tion. Note that local pointers cannot be updated until after the "Create_Msg” operation has been called. As
the partition executes, it continues to update its local pointers and send out messages with the "Put” operation.

The messaging system does not automatically refresh data. This means that after calling the "Put” operation,

the partitions local pointer will be pointing to a new memory location and the partition should not make any
assumptions about the values in this memory location. Therefore, partitions should output data in complete
messages and should not read from their output pointers. If automatic data refresh turns out to be needed,
an option to provide this capability may be added to the messaging system in the future.

The receiving partition registers to receive input messages using the "Register_To_Recv_Msg” operationdur-
ing the Setup submode. During the Create Data submode, the receiving partition cails "Create_Msg". If buff-
ers for this message have already been created in the software backplane the receivers local pointers will
be set to point to the message buffers. Otherwise the buffers will be created and then the pointers will be set.
To receive a message the partition calls the "Get” operation and de—references its local pointer. The local
pointer must be de—referenced after the "Get" operation has been called and during the same period. The
local pointer is only valid for one period. There are two variations of the "Get” operation: "Get” and "Get_Lat-
est”. The "Get” operation provides time consistent messages relative to the execution rate of the consumer.
This guarantees that, for example, areceiver executing half as fast as the producer will always get every other
message produced. Time consistent messages are guaranteed by giving the receiving partition the most re-
cent message that was valid at the beginning of its current period. Therefore, the partition is receiving data
that was produced during its previous period. The "Get_Latest” operation allows the requesting partition to
receive the most recent message sent by the producer. Note that this operation does provide time homoge-
nous data but not time consistent data. The time deltas between the messages received will vary depending
upon the relative execution order of the producer and consumer. Both the "Get” and "Get_Latest” operations
optionally return the time that the message was sent if the "Msg_Time" parameter is supplied.

4.3.2 Many-to-One Communication

The many-to—one communication works similar to the normal communication (one—to~many). The produc-
ing partitions register their output messages using the "Register_To_Send_Msg"” operation during the Setup
submode. During the Create Data submode, the producing partition calls "Create_Msg". If bufters for this
message have already been created in the software backplane the producers local pointers will be set to point
to the message buffers. Otherwise the buffers will be created and then the pointers will be set. As the parti-
tions execute, they update their local pointers and call the "Put” operation o send the messages. All mes-
sages sent are placed in the receivers queue. The exception "Queue_Full” is raised if the receiver’s queue
is full when the "Put” operation is called.

The receiving partition registers to receive input messages using the "Register_To_Recv_Msg" operation dur-
ing the Setup submode. During the Create Data submode, the receiving partition calls "Create_Msg". If buff-
ers for this message have already been created in the software backplane the receivers local pointers will
be set to point to the message buffers. Otherwise the buffers will be created and then the pointers will be set.
To receive a message, the partition calls the "Get” operation and de—references its local pointer. The local
pointer must be de—referenced after calling the "Get” operation and during the same period in which it was
called. All messages sent to the receiver are queued in FIFO order, the "Get” operation retrieves the next
message in the queue. The size of the queue is specified as a parameter to the "Register_To_Recv_Msg"

operation. The queue size should be determined based upon two factors. First, the number of possible send-
ers and second, the relative execution rates of the senders and the receiver. If the receiver is executing faster
than the senders or at the same rate as the senders, the queue size must be at least as large as two times
the number of senders. If the receiver is executing slower than the senders the foliowing formula can be used
to calculate the queue size: [(senders rate / receivers rate) x 2] x # senders. For example, if the receiver is
executing at 10Hz with three senders executing at 40 Hz the queue size should be [(40/10) x 2] x 3 = 24.

The "Number_Of_Msgs_To_Get" operation returns the number of messages that have been sent and are
available for the receiving partition to retrieve. The "Get" operation will raise the exception "No_Messages”
ifitis called when there are no messages to be retrieved. The "Get” operation also optionally returns the time
that the message was sent if the "Msg_Time" parameter is supplied.

23

4.3.3 Remote Communication

Remote communication is not used by partitions, it is used by interface agents, RTSSW software, and a few
special systems such as lOS which do not have Real-time Sessions Software runningon them. Remote com-
munication works similar to the many—to—one communication. The producers register their output messages
using the "Register_To_Send_Msg" operation during the Setup submode. During the Create Data submode,
the producing partition calls "Create_Msg". It buffers for this message have already been created in the soft-
ware backplane the producers local pointers will be set to point to the message buffers. Otherwise the buffers
will be created and then the pointers will be set. To send messages the producers update their local pointers
and call the "Put” operation. As messages are sent they are picked up by the router and transmitted to the
destination node. There can be more than one receiver of a remote message on a node.

The receivers register to receive input messages using the "Register_To_Recv_Msg" operation during the
Setup submode. During the Create Data submode, the receivers call "Create_Msg". If buffers for this mes-
sage have already been created in the software backplane the receivers local pointers will be set to point to
the message buffers. Otherwise the buffers will be created and then the pointers will be set. To receive a
message, the receiver calls the "Get" operation and de—references its local pointer. The local pointer must
be de-referenced only after calling the "Get” operation and during the same period in which it was called.
All messages sent to the receiver are queued in FIFO order, the "Get” operation retrieves the next message
in the queue. The size of the queue is specified as a parameter to both the "Register_To_Recv_Msg™ and
"Register_To_Send_Msg" operations. The queue size should be determined based upon two factors. First,
the number of possible senders, and second, the relative execution rates of the senders and the receiver.
If the receiver is executing faster than the senders or at the same rate as the senders, the queue size must
be at least twice as large as the number of senders. If the receiver is executing slower than the senders the
following formula can be used to calculate the queue size: [(senders rate / receivers rate) x 2] x # senders.
For example, if the receiver is executing at 10Hz with three senders executing at 40 Hz the queue size should
be [(40/10) x 2] x 3 = 24. All senders and receivers should use the same queue sSize.

The "Number_Of_Msgs_To_Get” operation returns the number of messages that have been sent and are
available for the receiving partition to retrieve. The "Get” operation will raise the exception No_Messages if
the "Get” operation is called when there are no messages to be retrieved. The “Get” operation aiso optionally
returns the time that the message was sent if the Msg_Time parameter is supplied.

4.3.4 Mallbox communication

Mailbox are registered using the "Register_Mailbox" operation during the Setup submode. Anyone wishing
to receive mail messages must register a mailbox.

The sender of a predefined mail message creates the local message using the "Create” operation in the ap-
propriate support package (Safestore_Mailbox.Create, Malfunction_Mailbox.Create, etc.). The message
may then be sent using the appropriate put operation in package Mailbox (Put_Safestore_Msg, Put_Malfunc-
tion_Msg, etc.).

The receiver of a mail message must check its mailbox to determine the number of messages present. This
is done using the "Num_Mail_Msgs" operation. Then, for each message in the mailbox, the receiver calls the
"Get_Next_Msg_Type" operation to determine the type of the next message. The "Get_Next_Msg_Type™op-
eration will return one of the six supported types, Return_To_Safestore, Return_To_Datastore, Malfunction,
Enter, Mega, or User_Defined. If the type is one of the predefined types, the receiver calls the appropriate
get operation (Get_Safestore, Get_Malfunction, etc.) to receive the message. The support packages can be
used to interpret messages of predefined types.

Some mailbox users will need to use mail messages for purposes other than Safestore, Datastore, Malfunc-
tion or Enter. For this reason the mailbox system provides support for user defined mail messages. Instead
of using the types and operations in Safestore_Mailbox, Malfunction_Mailbox, Enter_Mailbox or Mega_Mail-
box, the user defines their own type for a mail message and is responsible for packing it themselves (as op-
posed to calling a "Create” operation in a support package). Support for user defined messages is provided
through generic operations: "Get_User_Defined_Msg_Type”, "Get_User_Defined_Msg”, and
"Put_User_Defined_Message”. The sender and receiver must declare a type that will allow them to uniquely

24

i
i

(i

q

L)

identify the user defined message. This is referred to as the User_Defined_Msg_Types. Itis recommended
that an enumeration type be used for this. There are two restrictions placed on this type. First, it must have
a size of 32 bits, and second, the values that objects of the type take must be positive. The sender instantiates
the "Put_User_Defined_Msg" operation with the type for User_Defined_Message_Types and with the type
for the mail message itself. After the sender builds the message by assigning to its local copy of the mail mes-
sage, the instantiation of "Put_User_Defined_Msg" is called to send the message. The receiver instantiates
the "Get_User_Defined_Msg_Type™ operation with the type for User_Defined_Message_Types and the
"Get_User_Defined_Msg" operation with the type for the mail message. The receiver checks its mailbox for
messages using the "Num_Mail_Msgs" operation. For each message in the mailbox the receiver calls the
"Get_Next_Msg_Type" operation to determined the type of the next message. Ifitis auser defined message
the instantiation of "Get_User_Defined_Msg_Types” is called to determine which user defined message itis.
Once the receiver knows which user defined message it is receiving, it can call the appropriate instantiation
of “Get_User_Defined_Msg" to receive the message. It is up to the sender and receiver to ensure that they
are both using the same data type for user defined mail messages.

4.3.4.1 Mailbox Reads by Partitions
On an initialization to a Datastore/Safestore, partitions will receive messages containing the datastore/safe-

store data via their partition mailbox. The partitions are responsible for interpreting the data stream. Thedata
stream will contain the identifier and value of each data item. See section 4.4.4 for an example of a maitbox

processing procedure.

25

ORIGINAL PAGE 1§
OF POOR QUALITY

~ 44. The DIS C “ept

44.1 Whatis the .IS?

The DIS is used to build a symbol tabie which identifies data items in the running session. The identifiers are
* created using Ada code, and can be used by on-line code as well as by off-line tools. It willbe used to support
the following SSVTF capabilities:

) 10S Look & Enter capability

) Datastore/initialize

. Identification of messages passed between SSVTF partitions
. Data Logging

DIS stands for Distributed Identifier Specification; the identifiers created using it can be distributed anywhere
in the network for data requests. The DIS is composed of a top-level package of general definitions and a
set of packages that declar2 identifiers for different SSVTF systems. The top—ievel package, called DIS,
is written by the RTSSW group, and the general definitions itcontains are foride~ rtypes and subprograms
which coerate on these types (see an outline of the specification in section 8.4 - body of the DIS package
holds = symbol table; identifiers are added to it by calling the DIS's ‘Registi: subprograms. The set of
sackac. which declare identifiers and call these registration functions are re:. zd to as DIS—related pack-
ages. :se packages are to be written by the model developers, and must follow certain rules (presented
later in = .5 discussion) for their format and names.

There are five major abstract data types in the top—evel DIS package: Component_ID, Type_ID, Term_ID,
Message_ID, and Malfunction_ID.

A Component_IDgives a name to a configuration component of the SSVTF. A Component_ID may referto a
high—level, or iarge, component like Robotics or Environment, or it may refer to a much lower—level compo-
nent like the left arm of the SPDM mechanism within the Robotics system. Each Component_ID is registered
‘below’ some other component. For example, if Robotics is composed of SPDM, SSRMS, and MT compo-
nents, these are registered with Robotics as the parent component. In this way, a hierarchy of components
can be established. Component_IDs, Type_IDs, Term_IDs, and Malfunction_IDs can be registered at any
level in the hierarchy of components. The levels are pictorially represented in figure 4.4—1. A Component_ID
can be registered as an array by setting t~= _ength’ parameter tc "2 number of elements desired. This is a
way of registering asingle namethatrepre 'sar- - :fcompon: ~which : tainidentical elements but are
distinctinstances; forexample acompone -ray Jeusedic sterfo. -a2attransfer unitsif they are all
alike. Each elementofa Compcnent_ID arrzvisits< - aunique Co- >onent_ .. The component array can be
indexed using ordinal numbers (irom 1 to Length) or string labels (e.g., Left, Middle, Right). A prefixindicator
can be supplied with the registration call. In most instances, this means thatthe Component_ID being regis-
tered is also the identifier for a partition and it's mailbox. (If there Is more than one mailbox for a partition, each
should be identified by a different Component_ID prefix.)

A Type_IDis adescriptor for data items and can be used by Term_IDs to provide mappings for complex types.
The DIS supports integer types (of 8, 16, or 32 bits), floating point types (single or double precision), the type
String (fixed-length), type Character, and enumeration types. The DIS declares a Type_Tag which is used to
distiguish between these options. An integer, floating point, or character type identifier may be supplied with
upper and/or lower bounds. Enumeration type identifiers must be supplied with a list of labels that represent
the enumeration literals. Enumeration representation values may optionally be supplied at registration time.
Subtypes are Type_|Ds which are based on previously registered Type_IDs, but with (possibly) different up-
per and lower bounds. They can be registered using a Register_Sublype routine — there is one each for
integer, floating point and character types. The name of the subtype is the same as its base type, unless an
optional name parameter is supplied to Register_Subtype. It is important to name types and subtypes so that
they indicate clearly the engineering units that the user will see at the |0S.

A Term_IDgives a symbol name to a data item within a software mode!. The registration of the name includes
the necessary type information with a Type_ID. A Length parameter greater than one registers a Term_ID

26

OMNGINAL PAGE I8
OF POOR QUALITY

(

DIS DIS interface (RTSSW supplied)

(ID types and operations, global DIS operations)
(Body contains DIS table)

SSTF_Defs Top-level definitions (RTSSW supplied)
(System IDs, standard types)

Robot Dels Environment Defs USAD Defs 5y3t9m definitions (mode"er supp"ed)

(Component, Type, Object

and Malfunction |Ds)
SPDOMDefs ~ SSRMS Defs ™ MT Defs Next-lower level definitions

(Component, Type, Cbject
e o and Malfunction 1Ds)

Arms Defs Head Defs Tools Defs
Lowest-level packages

e o (Type 1Ds, Object iDs,
Malfunction IDs)

The arrows represent package "with"s. Each Defs package depends on its parent.

Figure 4.4—1 Levels of DIS Identifiers

array, multiple terms of the same type. Each elementof a Term_ID array is a separate DIS Term_ID; like a
Component_ID array, this can be indexed by ordinal numbers of string labels.

A Message_ID is a symbol for identifying messages transmitted in the software backplane. Message_IDs
are registered in a partition's interface definition package. The only required information about a Message_ID
is the size, in bits, of the data to be sent. In addition, one can specify that it identifies a safestore message.

A Malfunction_iD is a name which can be used by the IOS page developers to invoke a malfunction in the
running session. The malfunction identifier includes descriptor information that determines the kind of param-
eters which can be sent with the identifier to the host. A Malfunction_ID array can be used to register a mal-
function that applies to many entities; as with Term_ID arrays, this is accomplished by setting the Length pa-
rameter the the number of malfunctions desired. As with Term_ID arrays and Component_|D arrays, each
element of a Malfunction_ID array is a unique identifier, and the array can be indexed by ordinal numbers or a
set of string labels.

There are four categories of malfunctions, distinguished by the kind of parameters which can be passed to
them. Firstis the *simple” or "parameterless™ malfunction; this is registered with no parameter information;
when an instructor activates this kind of malfunction, no input parameters are passed to the model along with
it. Second is the “options” malfunction; a single enumeration-type parameter is passed to the malfunction to
indicate the behavior desired. For example, if a valve can be failed in one of four positions, an enumeration

27

type identifier would be reigistered which lists the four positions; this list will be displayed to the instructor when

the malfunction is activated. The instructor will select the correct position at which to fail the valve; this selec-
tion will be passed to the model as the parameter for the malfunction. Third is the “P71" malifunction; a single
floating point value is supplied with the malfunction. The fourth kind of malfunction, “P1_P2", is supplied with
two floating point values; these are typically used for scale and bias. When registering a maifunction which
has floating point type parameters, the Px_Name and Px_Type parameters are always required. Px_Low and
Px_High limits can be supplied; if they are not supplied, the high and low limits of the malfunction parameter
are taken from the type registration for Px_Type.

Each “..._ID" type is declared “private” in the DIS package spec. For each, there is a “Register_..." function
that returns a value of the respective type (e.g., there is a “Register_Term" function which returns a Term_ID).
These are the functions that are called by the DIS-related packages which are written by the SSVTF model
developers. Each of these functions has the side—effect of adding the identifier to the symbol table in the DIS
package body. Because the identifiers being added to the DIS are notto be changed atruntime, the identifiers
are to be declared constants in the DIS—related packages.

Along with the identifier types and registration functions, a number of other supporting types and functions are
declared in the top—level DIS package. “User” is an enumeration type which provides tags that indicate the
uses of a Term_ID; e.g., a Term_ID with User “Look_Enter” means that the term being identified can be ex-
amined or changed by |OS or data logging. When registering a Term_ID, a list of users is supplied as an
array—the User_List parameter. The default combination of “Look_Enter” and “Initialize” in this list means
that the term can be examined and changed by 108, and is to be inculded in the Datastore/Initialize data set.

Supporting functions include selectors for information associated with identifiers, such as the string name of
an identifier, the number of levels associated with Component_ID, the type tag associated with a Term_ID,
and the different descriptor information associated with a Type_ID.

Entities in the real software are “connected” to DIS identifiers by the operations Connect_Term, Connect_Mal-
function, and Connect_Prefix. The “Register_..." functions are called from the DIS—related packages written
by the model developers, and provide the static DIS information needed by off-line tools; the “Connect_..."”
operations supply the additional run—time information needed to locate data and partitions. The Con-
nect_Term procedure makes an association between a Term_|D and the address of the data which is referred
to by the identifier. This allows the data to be retrieved “through the back door”. Connect_Malfunctionis called
for matfunctions which need to be datastored or which will be “poked’ using the Malfunction_Mailbox package.
An address is required for each parameter to be associated with the malfunction, as well as an address of a
Boolean value, the “active” flag, which indicates whether or not the malf is currently activated. The Con-
nect_Prefix procedure’s Component_|D parameter must have been registered with Prefix => True. If a parti-
tion will receive messages in more than one mailbox, each should be identified with a different prefix Compo-
nent_ID, and each of these needs to be connected with Connect_Prefix. The prefix name should uniquely

identify a particular maifbox.

4.4.2 How Is the DIS Organized?

The DIS—related packages are organized in a hierarchy. The top-level DIS—-related package is called
SSTF_Defs (all DIS—related packages have the suffix *_Defs”), and is written and maintained by the RTS
group. This package registers the Component_IDs for the top-level systems in the SSVTF, which includes
Robotics, Environment, USAD, USAV, Visual, SNS, and others. It aiso registers Type_|Ds and supplies
Type_Tags which correspond to the ones in the SSVTF Standard_Engineering_Types package. See Appen-
dix |l (section 8.5) for the complete specification of the SSTF_Defs package.

For each Component_ID in the above package, another package must be created which defines the identifi-
ers that exist at the next lower level in the DIS hierarchy (this is a general rule for DIS—related packages).
Thus, there must be a package for Robotics (which would be written by the Robotics group), and it will look
something like this:

with DIS, SSTF_Defs;
package Robotics_Defs is

28

1
|

G

(

package DD renames SSTF_Defs:
—— Identifiers for Robotics components.

MT : constant DIS.Component_ID := DIS.Register Component
(DD.Robotics, "MT”);

SSRMS : constant DIS.Component_ID := DIS.Register Component
(DD.Robotics, “SSRMS”);

SPDM : constant DIS.Component_ID := DIS.Register Component
(DD.Robotics, ”SPDM”, Prefix => True):
AVU : constant DIS.Component_ ID := DIS.Register_Component
(DD.Robotics, “AVU”, Length => 4);
MBS : constant DIS.Component_ID := DIS.Register Component
_ (DD.Robotics, "MBS”);
MMD . constant DIS.Component_ID := DIS.Register Component

(DD.Robotics, "MMD");

end Robotics_Defs;

This package would be written by the Robotics group. Similar packages would be developed for USAD, Envi-
ronment, etc. Notice that the hierarchy concept is recursive: for the Robotics systems there must be an
SSRMS_Defs package, an MT_Defs package, an SPDM_Defs package, etc.; and for each Component_ID
registered in these packages, another package must be written. For a component array like AVU, only one
AVU_Defs package needs to be written; the identifiers defined in this package will be duplicated the appropri-
ate number of times; in this case four. The current design of the DIS permits up to seven (7) levels of compo-
nents to be registered. Term_IDs, Type_IDs, and Malfunction_IDs can be registered at any level in the hierar-
chy. See Figure 4.4—1. Two rules mustbe followed to ensure that the Dis is created properly: (1) al IDs in the
same *_Defs” package must be registered with the same Parent Component_ID; and (2) the same Compo-
nent_ID must not be used as a Parent in more than one *_Defs" packages.)

The hierarchy of DIS—related packages should reflect the hardware, not the software, structure of the mod-
eled system. There are two reasons for this: (1) the DIS exists mainly to provide a window into the system for
10S and system initialization; the people performing these duties are not likely to know (nor should they have
to know) the software organization of the system (i.e., the partitions, object classes, efc.); and (2) the software
structure of the simulator will probably change more frequently than the hardware configuration, and changes
to the DIS hierarchy should be minimized, since this has adverse effects on re—compilation. Therefore, the
way a system (like Robotics or USAD) is organized from the user’s point of view is how the DIS—related hierar-
chy should be organized. The relationship between this organization and the “partition” organization is dis-
cussed below: see “Connecting Terms and Prefixes”.

(Note that Message_|Ds do not appear in * Defs” packages, butin the appropriate partition’s interface defini-
tion package, with the suffix *_intfc_Defs". They do not form any part of the *_Defs” hierarchy.)

In addition to the hierarchy rule, other guidelines need to be followed in order for the DIS to work properly. All of
these DIS—related packages should have no “state”; i.e., all of the identifiers are constants, and no variable
data should be declared in these specs. Furthermore, no subprograms may be exported from these pack-
ages. The*_Defs” packages should nothave package bodies. Also, °_Defs” packages should not “with” other
packages which have state or subprograms. This is because the entire *_Defs” hierarchy is to be “withed”
offline for use by off-line tools. o o

Each Term_ID mustinclude type information in order to permit interpretation of the data being examined. The
code below shows some examples of Type_ID, Term_ID, and Malfunction_ID registrations.

with DIS;
with SSTF_Defs;

29

with Robotics_Defs;
package SPDM Defs is IS CaE R - =

Circle_Degrees : constant DIS.Type ID := DIS.Register Subtype
(Robotics_Defs.SPDN, Base => SSTF_Defs.Degrees,
Low_Bound => -180.0, High Bound => 180.0);

Left_Arm Yaw : constant DIS.Term ID := DIS.Register_Term
(Robotics_Defs.SPDM, "Left_Arm Yaw”,
The_Type => Circle_Degrees);

Left_Arm Pitch : constant DIS.Term ID := DIS.Regsiter_Term
(Robotics_Defs.SPDM, "Left_Arm Pitch”,
The_Type => Circle_Degrees);

Left_Arm Roll : constant DIS.Term ID := DIS.Register_Term
(Robotics_Defs.SPDM, "Left_Arm Roll”, DIS.Float_ Tag,
Users => (DIS.Look, DIS.Initialize)):

Direction_Labels : zonstant String := “Yaw, Pitch, Roll”;

Right Arm : constant DIS.Term ID := DIS.Register_Term
{(Robotics_Defs.SPDM, “Right_Arm”,
The_Type => Circle_Degrees, Length => 3,
Labels => Direction_Labels);

Fail Left Arm : constant DIS.Malfunction ID := DIS.Register Malfunction
(Robotics_Defs.SPDN, "Fail_Left Arm”, N
Options => SSTF_Defs.On_Off);

Fail_Right Arm : constant DIS.Malfunction ID := DIS.Ragister_Malfunction
(Robotics_Defs.SPDM, “Fail Right_Amm”,
P1l_Name => "Degrees”, Pl Type => Circle_Degrees);

end SPDM Defs

A Component_ID which is registered as an array (by supplying a length parameter to the Register_Compo-
nent routine) requires only one “Defs” package which uses the ID as its parent. The DIS will automatically
duplicate the contents of the “Defs” package to each component represented by the multiple.

4.4.3 Connecting Terms, Prefixes, and Malfunctions
In the partition code, a modeler needs to supply a procedure to associate (or connect) addresses to term,

malfunction, and prefix identifiers to the partition. This needs to be called in the Setup procedure . Here is an
example:

with Mailbox, Generic_Model, SET, Robots_Types;
package body SPDM Partition is '

Left_Arm Yaw : Float;
Left_Arm Pitch : Float; _
Left Arm Roll : Float; =4

Left_Arm On _Off : SET.On_Off;

30

Right_Arm : array (1..3) of Float;
Fail_Right_Arm Active : Boolean := False;
Fail_Left Arm Active : Boolean := False;
Right Arm Degrees : Robots Types.Degrees;

Partition Name : constant String := "SPDM Partition”;
Mb : Mailbox.Mailboxes; -- my mailbox

procedure Update is separate:;
procedure Freeze is separate;
-— ...etc. for mode procedures.

[| procedure Setup is separate;
procedure Process_Mailbox Requests is separate;

package My Thread Exec is new Generic_Model.Periodic
(Name => Partition Name, -—— etc...

end SPDH_Partition;

Each Term_|D and Malfunction_ID must belong to a partition in the system. By “belonging™ we simply mean
that the data identified by a Term_ID is located in an “owning” partition, and that the handling of a malfunction
identified by a Malfunction_ID is done within a “owning” partition. No data item or malfunction handling is
shared between partitions; there is only one “owner”perid. A prefixis aComponent_ID that directly identifies
asingle partition. The prefix of a Term_{D or Malfunction_ID is that portion of the identifier which indicates the
partition to which that identifier belongs. More than one prefix may identify a partition; also, all identifiers regis-
tered under a particular prefix must be located within one partition.

As an example of this, consider a partition that combines the SPDM arms and the power supply for the arms.
Suppose that the following four components have been registered: Robotics.SPDM.Arms, Robo-
tics.SPDM.Arms.Left_Arm, Robotics.SPDM.Arms.Right_Arm, and USAD.EPS.Arm Power. If
the data and malfunctions for all the identifiers in the packages Arms_Defs, Left_Arm_Defs, and
Right_Arm_Defs are to be located in this partition, then Robot ics . SPDM. Axrms might be registered with Pre-
fix => True, and the partition calls *Connect_Prefix” with the Component_ID SPDM_Defs.Arms. This parti-
tion also connects the prefix USAD . EPS . Axm_Powar (which should also have been registered with Prefix =>
True), if the data and malfunctions for all the identifiers in that package are located in this partition.

In the following example of a Setup procedure, the data items being connected to identifiers are not complex
types. This is not a realistic example, and is provided only to illustrate the way to call the Connect routines.
The way to connect addresses to identifiers representing selected pieces of complex objects is to use the
Symbol_Map package; this is discussed in Section 4.5. The “DIS.Connect_" procedures should be called
after creating the object instances in the Setup procedure.

with DIS, SPDM Defs;

with Local; =-- a package to get local system information
procedure Setup is
begin

B =—— Create objects (see Sec 4.2.1)

DIS.Connect_Term -
(SPDM_Defs.Left_Arm Yaw, -- first parameter is the Term ID;
Left_Arm Yaw’'Address); -- second is the actual data address.

DIS.Connect_Term (SPDu_pefs.Left_ArmL?itch, Left Arm Pitch’Address);
DIS.Connect_Term (SPDM _Defs.Left_Arm Roll, Left_Arm Roll’Address);

3

DIS.Connect_Term Array (SPDM_Defs.Right Arm, Right Arm(1)’Address);
DIS.Connect_Prefix (Robotics_Defs.SPDM, Local.Get_Node Nama,
Local.Get_Process_ID, Partition_Name)’
-- if more than one prefix relates to this partition,
-- do another “Connect_Prefix” call for that one.

DIS.Connect Malfunction (SPDM.Fail_ Left Arm,
(Active_Addr => Fail_ Left Arm Active’Address,
Options_Addr => Left_Arm On Off’'Address,
others => Dis.Null_Address);
D1S.Connect_Malfunction (SPDM.Fail Right_ Arm,
(Active Addr => Fail Right_ Arm Active’Address,
P1l_Addr => Right_Arm Degrees’Address,
others => DIS.Null_Address)):

end Setup; ‘

4.4.4 Handling Enters, Malfunctions, and Initlalization data

Connecting addressed to identifiers is enough to permit 10S to look at the data items. In order to allow 10S to
“enter” values, it is necessary to receive messages from 10S through the partition mailbox. The reason for this
is that a change of state like this cannot be done the way a read is done (backdoor via address); itis necessary
to incorporate the new value in a controlied way that cannot corrupt the system in the middie of computation. A
procedure should be written to handle this; in the example below, it is called Process_Mailbox_Requests. The
mailbox is used to accept requests for IOS enters, system initialization values, and malfunctions. This proce-
dure should check for mailbox inputs and process whatever has arrived, applying the malfunction or new data.
This procedure should be called at the beginning of the Run and Freeze mode subprograms. Thus, the up-
date is incorporated in a controlled way.

Notice that the different mailbox packages have the ability to “poke” the data coming in. This takes the data
that has come into the mailbox and puts it into the =ddress that was connected for that data, whether it is
malfunction data or term data being entered from i~ ™ or returned from a datastore Initialize operation. The
example shows how to treat some entered data w ' special processing (data which cannot just be directly
placed into the target address), and how to poke the rest.

with DIS, SPDM Defs;
with Mailbox, Enter_Mailbox, Malfunction_Mailbox, Safestore_Mailbox;
separate (SPDM Partition)
procedure Process_Mailbox Requests is
Num Msgs : Natural := Mailbox.Num Mail Msgs (Mb);

Mora : Boolean;
Msg Type : Mailbox.Msg Types;
Size : Natural;
E_Msg : Enter Mailbox.Enter_ Msg’
M Msg : Malfunction Mailbox.Malfunction Mag;
S_Masg : Safestore_Mailbox.Safestore_MNsg;
G_Msg : Mega Mailbox.Mega Msg’
begin

for I in 1..Num Msgs loop
Msg_Type := Mailbox.Get_Next Msg_ Type (Mb):

case Msg Type is
when Mailbox.Enter =>

32

e]

A

i
i

when

when

when

end case;
end loop;

Mailbox.Get_Enter_Msg (E _Msg, Mb);
if Enter Mailbox.ID(E_Msg) = SPDM Defs.Left Arm Yaw then
—- You only need to check the ID if you need to do
-- special processing on the incoming data...
Left_Arm Yaw := Enter_Msgs.Convert_Float (E_Msq);
-— ... etc.
elsif Enter_Mailbox.ID(E_Msg) = SPDM Defs.Right Arm Yaw then
Right_Arm Yaw := Enter_Msgs.Convert_Float (E_Msg):
-- etc ...
elsif
~-— atc...
else
-— for all other enters, just call poke, which directly
-— places the data into its address...
Enter_pailbox.?oke (E_Msg):
end if;
Mailbox.Return_to_Datastore | Mailbox.Mega => --— datastore
Mailbox.Get_Mega_Msg (G_msg, MD);)
Mega_Mailbox.Go_To (G_Msg, SPDM Defs.Right Arm Yaw, Found);
if Found then
Maga Mailbox.Value (G_Msg, a-floating-point-variable);
-- process the floating point variable before assigning.
-- getting the value of a maga entry ensures that its
—— value will not be poked by a poke_all call.
end if;
Mega_Mailbox.Poke_All (G_Msg); -- simply poke all other entries
Mailbox.Malfunction =>
Mailbox.Get_Malfunction_Msg (M _Msg, Mb):
if Malfunction_Mailbox.ID(M Msg) = SPDM Defs.Fail Left Arm then
== do whatever it takes

else
Malfunction_ Mailbox.Poke (M_Msg)
end if;
Mailbox.Return_To_Safestore => -- safestore

Mailbox.Get_Safestore_Msg (S_Msg, Mb);
if Safestore_ Mailbox.ID(S_Msg) = A_Safestore Message Id then
The_Safestore Data_Object.all :=
Move_Data (Safestore_Mailbox.Value(S_Msg)):
elsif ... -- a different id then
. =-- move the return value to the data item
end if;

end Process_Mailbox_ Requests;

The DIS term registration can be used to tag datastore items for eventual retrieval. Each item tagged for
datastore will be retrieved “in the background®, like an I0S iook. Each item tagged for safestore will be re-
trieved through the software backplane; the partition must create software backplane “output messages” for
these items. Both datastore and safestore items will be sent back (for return to datastore and return to safe-
store) to the partition through the partition’s mailbox — the partition musthave a special procedure to read this
mailbox during initialization. .

33

4.4.5 How WIIl Off-line Tools Use the DIS?

The identifiers registered with the DIS through the *_Defs’ packages are entered into the DIS body's data
structure at elaboration time, before the start of the main program. Then aprogram may access any of the DIS
data by calling functions and procedures in the DIS spec. While this works out well for real time models, it is
notgood for off-line tools to be dependent (in the Ada sense) on these packages. If any change is made to the
registered identiflers, the off-line tool using the DIS would have to be re—linked in order to get the new identifier
information. So, for off-line tools, the DIS tree will not be populated by the elaboration of °_Defs' packages,
but by the reading of a file. The DIS.Reportroutine saves the entire set of registered static information in a file
which can be loaded into the DIS tree using the DIS.Load routine. The off-line tool is dependent on the file
instaead of the packages; in order to get new versions of the DIS, a tool will have to load new versions of this
file, but it will not have to be re—linked.

An example of such an off-line tool is the DIS Browser, which displays the registered identifiers in a worksta-
tion window so that IOS page creators can select an identifier and associate it with a screen gauge, button,
or meter. (On-line tools that require the presence of the entire set of DIS identifiers, like the Datastore parti-
tion and the Central look—at engine facility, will also use the report files rather than the ‘'_Defs’ packages.)

The DIS.Load routine can work in two ways: when the File_List parameter is False (default), the From_File
string parameter is the name of a file containing the output of a DIS.Report call. When the File_List parameter
is True, From_File indicates a file that contains a list of files, each of which was created by a DIS.Report call.
Each group (USAD, Robotics, Environment, etc.) will create a different file using DIS.Report. Then these
files will be listed in the file passed to DIS.Load; in this way the entire set if DIS identifiers will be loaded for
tools which need to see the whole of it.

The Dis.Report creates a non—expandedreport file by default. The report contains all information necessary
for the Dis.Load call, and the output is summarized such that only a few lines are used for an id array, even
if the array has hundreds of elements. By setting the “Expand” parameter to True, and expanded report file
is produced. Each line in the file is exactly one identifier—all of the arrays are expanded out. (Unlike the
non—expanded report, the expanded report does not contain enough information to re—create the entire Dis
via a Load call.) The identifier on the line can be converted to its internal representation using the appropriate
Dis.Convert call. The expanded report is useful for visual inspection of the Dis contents and for tools that

need to search through or manipulate the entire Dis.

Another way of using the Dis is through the Navigate package, a sub—package available in the Dis spec. This
permits a tool familiar with the Dis structure to traverse through the Dis tree using the different types of *han-

dles” defined by the Dis.

34

J 4.5. Mapping Logical Name to Physical Address: DIS & Symbol Map

In the SSVTF simulation data needs to be displayed at Instructor/Operator Stations (10S). The DIS was
created to assist in this problem. The DIS provides the 10S a logical view of the simulation by defining a meth-
od of relating simulation terms to 10S page terms. However, the DIS in itself does not solve completely the
problem of mapping physical Ada simulation terms to the 10S logical term.

The SSVTF architecture encourages the use of partitions, classes, and class compositions. A class repre-
sents a specific object and should not be aware of where it is used in the simulation—i.e., which other struc-

tures (partitions, classes) may inherit it. However, there are Ada terms in the individual classes that may need
to be visible at an 10S. How can these terms be registered in the DIS?

A register symbol structure has been defined that can solve the problem. A class provides a procedure that
registers Ada terms in the class with a symbol list. A structure which inherits the class (a parent) provides the
class its name (the parent name) in the Create procedure. Thus, when class terms are registered in the sym-
bol list the parentage is contained in the term name. In this manner, Ada terms within a class are registered
with the symbol list. This provides a physical mapping of terms to simulation physical addresses.

The specification for the Symbols package which manages the symbol list follows.

with System;
package Symbols is

type Base_Types is (Integer, Real, Enum, Boolean);

_.-t*i**ii*ttt*ii*iitiii*i'i*i**iﬁ*t**tiit*i**ttt*tl*i*ti‘ttitiit'i'tti*tt**ﬁ'*

--| Register associates an actual variable name with its type, address, and size.

[| --] ** NOTE ** Register is only valid during Set_Up mode.
-1
~-| Parameters:
== Name : the full name of the variable
-=1 Base_Type : the base type of the variable
--1 Tick_Address : the address of the variable
-1 ** Myst use Variable’Address **
--1 Tick_Size : the size in bits of the variable

-=1 ** Must use Variable’Size **
--| Exceptions Raised:
== Duplicate_Name : raised if the same name is in the database

- Register Mode : raised if system is not in Set_Up mode

--|] Example of how to use:

-=1 Register (Name => Parent & ".item",
-1 Base_Type => Symbols.Integer,
-=1 Tick_Address => Instance.Item’Address,
-=1 Tick_Size => Instance.Item’Size):
__t*tt*ttiﬁit*i*tiitt*tt*tiit*ti’*lt*t**titt*tt*titltttiit*tttttttttttitttt*t*'
procedure Register (Name : in String;

Base_Type : in Base_Types;

Tick_Address : in System.Address;

Tick_Size : in Natural);

- ti’"i*l'tt*ii*t"'tt't“ti*ttttttiiitti**i*tiill‘*i*tltliittiitttittttttii’tt'tt*
--1 Is_Address is a function that returns the address of a registered symbol
~-| ** NOTE ** Is_Address also removes the symbol from the symbols database
_-l T

--| Parameter: 7

--1 Name : the full name of the registered variable
-=1

--| Returns:

-=1 Address : the address of the registered varlable

35

--} Exceptions Raised:

-=1 Name_Not_Found : raised if the name is not in the database
_.-' ttt'*****ittittttti*i*i***i*iit*it*'*'ittiitttl‘*t'*it*tttittittit*tltttttt 7|'j77'
function Is_Address (Name : in String) return System.Address; o
- ' 2 2222222 2222222 2222202222200l ittt st il Rl il s st ttassss s
--] Report is a procedure that prints the contents of the Symbols_Table to a
--| data file.
--|] ** NOTE ** This routine is supplied for testing only, and should not be
-1 called in real-time.
-1
--| Parameter:
--1 Filename : the name of the output file
--1
--} Exceptions Raised:
-1 Those propagated by Text_ Io.
P 2 S22 RS RSS2SR R0 RRRRRRRRRRRR R R Rttt tii s a0ttt RSS2SR
procedure Report (Filename : in String);
- 22 X222 2R2220C22R 2222 R R ARttt Rl Rt dli i i il i sl st il s 2ahad
--| Clear will remove all the remaining symbols from the Symbols Table.
--|] ** NOTE ** Thi{s routine should be -alled by the partition in Set_Up, after all
== of the Dis.COnnects have completed.
--1
--| Parameter:
== none
-1
--} Exceptions Raised:
-=1 Those propagated
222222222222 22222222020 RRRRRdRR Rt RRRRRRE RS
procedure Clear;
| —

Name_Not_ Found : exception;
-- raised by Is_Address if the name is not currently in the database

Duplicate_Name : exception;
-- raised by Resister if the same name is currently in the database

Register Mode : exception;
-- raised by Register if the system is not in Set_ Up mode

end Symbols;

--| Abstract: Symbols is a service package that is used to associate
--1 variable names with their Type, Address, and Size
-1 attributes.

== How to use:

-=1 for a Class (in the Create operation)
-=1i call Symbols.Register for required variables

--1i for a Partition (in Set_Up)

bl process all Class.Create operations

--1 call Symbols.Register for required partition symbols (opticnal)
-=1 call Symbols.Report to show all registered symbols (optional)
== process all Dis.Connect operations

-1 call Symbols.Clear to remove any unused symbols

|
|

"

36

C

--1 Warnings: The Register parameters Tick_Address and Tick_Size must
--i be values that are the direct result of using the Ada
-- Predefined Language Attributes P’Address and P’Size.

-—1 A call to the Is_Address operation returns the address
-1 of the symbol, but also removes the symbol from the database.

Now we need to map the physical address to the logical name registered in the DIS. This is achieved with 7
the DIS.Connect_Term procedure.

package DIS is

procedure Connect_Term { Term : in Term_Id; ---DIS.Term_Id (Logical)
Symbol : in String); --- Symbol.Register name
--- {Physical)
L] L] L]
end DIS;

In summary, the 10S logical view of the simulation is defined via the DIS and DIS_Defs packages. The physical
address of simulation terms is captured via the symbol list (package Symbols). The two are joined via the
DIS.Connect_Term procedure. i

The following figures depict how the logical to physical mapping works. The figure 4 5-1 provides code ex-
cerpts of a partition, its associated DIS_Defs, and Class packages. The figure 4.5-2 provides a conceptual
view of how the Set_Up procedure ties everything together.

37

package Partition;

with Class_A, DIS, My_Dels;
package body Partitlon is
2ebra : Class_A.Objects;

procedure Set_Upis

begin

Class_A.Create

(Instance => Zebra,

Parent => “Partition.Zebra");

DIS.Connect_Term

(Term => My_Defs Value_X,
Symbol => "Partition.Zebra. X"
DiS.Connect_Term

(Term => My_Defs.Value_Y,
Symboi => “Partition.Zebra.Y*
DIS.Connect_Term

{Term => My_Defs.Command,
Symbol => "Partition.Zebra.Cmd"

end é'e't_Up;

ond Partition;

with Other_Defs;
package My_Defs is
Value_X : constant DIS. Term_id :=

Value_Y : constant DIS.Term_Id :=

Users
Command : constant DIS. Term_Id :=

DIS.Register_Term (Parent => Other_Defs.Sys,

Name => "Vaue_X",
The_Tag => DIS.Float_Tag,
Users => (1=> DIS.Look));

DIS Register_Term (Parent => Other_Defs.Sys,
Name => "Vaue_Y",
The_Tag => DIS.integer_Tag,
=> (1=> DIS.Look));

DIS.Register_Term (Parent => Cther_Defs.Sys,
Name =>*Command”,

The_Tag => DIS.Enum_Tag

(Bits)

Users => (1=> DIS.Look});
end My_Defs;
Symbol List
Name Type Size Address /

Partition.Zebra.X Real 32
Partiion.Zebra.Y Integer 32
Partition.ZebraCmd Enum 8
Partition.Zebra.Dog.A Boolean 8
Partition. Zebra.Dog.B Integer 32

FACO
FAC4
FAC8
FAC9
FACC

package Class_A is
type Object is limited private;
type Commands is (Set_Qty, Leak_Oil),

= procedure Create (Instance : in out Object;
Parent :in String),

procedure Request_State_Change
(Instance :in out Object;
Command : in Commands;
Val :in Integer);

private
type Object is
record

X :Real;

Y lInteger;

Cmd : Commands;

Dog : Class_B.Object;
end record;

end Class_A,;

with Class_B, Symbols;

package body Class_A is

procedure Report_Symbols
(Instance : in out Objects;
Parent :in String) is separate,

procedure Create (Instance : in out Objects;
Parent :in String) is

begin
Report_Symbols (Instance => Instance,
Parent => Parent);
— Make a class composition
Class_B.Create (Instance => Instance.Dog,
Parent => Parent & *.Dog");

en'd.éreats;

separate (Class_A)

procedure Report_Symbols is
(Instance : in out Objects;

Parent :in String) is

Symbols.Register (Name => Parent & “.X°,
Base_Type => Symbols.Real,
Tick_Address => Instance X'Address,
Tick_Size => instance. X'Size);

begin

=> Parent & ".Y",

L1 Symbols.Register (Name
=> Symbols.Integer,

Base_Type

Tick_Size => Instance.Y'Size);
Symbols.Register (Name => Parent & ".Cmd",
Base_Type => Symbols.Enum,

Tick_Size => Instance.Com'Size),

end Report_Symbols;

Tick_Address => instance Y'Address,

Tick_Address => instance.Com’'Address,

Figure 4.5-1

38

G

C

Partition

SetUp | '"v==-ul.. Class_A
oIS] ",," , " —d|Create
oo’ ' el
Connect |&~ : - “Creates
\ '
o N\ E @ :
k \ . ! &
DIS_Defs \ ' Class Y | + |Class Z

X ‘ :
Robotics_Defs \\ '/

] L'
. '
' . Class X | &
\ \ : Voot
. A]
A Y [1]
Arms_Defs \ .])
\fnnects DISId ., ™,
th symbol .
\ e
Symbol List
ATerm Int 32 FCAOQ
AYTerm Real 32 FCA4 v
A.Y.X.Term Enum 8 FCA8 Puts registered _
AZTerm Int 32 FCAC \terms inlist, ~
- — —

Legend
— With arrow
==+-)» Procedure call arrow
—— - ——®> Resultant action arrow

Figure 4.5-2 Mapping Logical
Terms to Physical Address at
Set_Up

39

4.6. Datastore/lInitialization

The following sections provide a textual description of datastore activities and requirements. The figures, at
the end of this section, depict how a datastore is performed, where datastores are performed and how a return

to datastore occurs, respectively.

A datastore is an instructor initiated activity. The state of the simulation session is captured and saved to a
disk file. The datastore may be saved and used in other simulation sessions. The datastore retains enough
information to initialize the simulation to the same state at which the datastore was taken.

4.6.1 Perform a Datastore

The following steps are performed when a datastore is requested by the instructor. An instructor enters a
datastore command along with some type of datastore ID. The IOS sends the datastore command and ID
to RTSSW. RTSSW transmits the datastore command to all Ada mains and platforms (including APM and
JEM). The session transitions to the Datastore mode synchronously. In the datastore mode, no data transters
occur except for those partitions responsible for communicating with hardware devices (to keep them from
dropping off-ling). The Datastore object, using the I0S Look-Attechnique and DIS, reads data from the simu-
lation partitions (note that OBCS may be an exception to this method). The Datastore object buffers the data
and writes it out to an ASCII disk file in records containing the fully qualified Ada DIS name, type, and value.
RTSSW provides datastore status to SaC as required. Lastly, the session transitions to the Freeze mode,
and RTSSW sends 10S the Freeze mode notification.

4.6.2 Initlalize to a Datastore

The following steps are performed when an initialize to a datastore is requested. An instructor enters the ini-
tialize to datastore command and corresponding datastore id. The IOS confirms the data entry and sends
both the command and datastore id to RTSSW. The session transitions to the Initialization mode synchro-
nously. The Datastore object opens the datastore file and reads the datastore data from disk. The Datastore
object parses the datastore data and sends the datastore data to the appropriate partitions via mailbox mes-
sages. Each partition reads its mailbox messages and self-initializes to its internal datastore values. The
session then initializes to the datastore point during the system init mode.

4.6.3 Partition Requirements

For a partition to successfully be involved in a datastore event, the following rules must be adhered to:
e Each datastore item must be registered in the DIS.

e Each partition has a mailbox.

e Each partition provides the software to process (input) the data from the mailbox.

» Each partition provides a self-initialize routine to internally initialize to the datastore state.

4.6.4 Datastore Notes

RECON will not be dependent on the DIS to process datastore data.
The datastore file will be ASCH to the extent practical.

OBCS datastore (flight software terms) may be a special case. Due o the size and nature of the OBCS, the
OBCSbinary data may be handled in a differer* manner. OBCS will be responsible for the format of the binary
data. OBCS data will probably be maintained - own datastore file; the file name will correlate to the regular
datastore file name/id.

The datastore file(s) will have anid associatirg; ..: “astore id, SGMT, and load id. RTSSW will create the datas-
tore file name. A title and short description of the datastore will be entered by the instructor and placed in the
datastore file.

40 ORIGINAL PAGE IS
OF POOR QUALITY

q

CSIOP does not do a datastore to the CSIOP platform (the CSIOP interface agent in the Session Host pro-
vides the CSIOP datastore data).

SNS will do a datastore to the disk local to the SNS platform. The SNS datastore filename will correspond
to the Session Host name for correlation by OSS/Recon in the datastore repository.

Procedures are supplied (by RTSSW) to build and parse the mailbox headers for the datastore message data.
(Refer to section 7.3 in Appendix).

The datastore data will be buffered by bytes, not by specific Ada data type. The Datastore object will supply
the procedures necessary for converting the datastore information to the byte form. The return to datastore
partition software will need to convert the ‘bytes’ to the appropriate Ada data type.

On return to datastore, all the data for a partition will be buffered together in a single mailbox message.

41

FREEZE mode, submode of Hold

Session Host / SNS

Partition A| |Partition B Partition C

A ! !

Datastore Datastore f Datastore
Data % Data Data

Datastore Term
Location

Datastore
Data

T >
Figure 4.6-1. Taking a Datastore

42

~

Partition N

}

Datastore
Data

i

I0S

RTSN

CSIOP

SNS

CPU

/

Session
Host

JEM

=

:l

APM

Figure 4.6-2. Physical Layout of Training Session

Session Host

init data

-0

L;SAt % ﬁ |oél/v Csﬂ% ;ﬁ ée’ct s‘a@.:¢

RTSSW
Ct_’)\/JSoftware Backplane
Training Stores Manager o>

Session partition, data
Manager @ .
Ds/ss id @
©)
data info
data \ o
3 init buffers
command
DS/SS
108

Y —

Note: Initialization to a Datastore/Safe-
store will occur in an analogous man-
ner on the SNS platform.

Figure 4.6—3. Initialization to Datastore/Safestore

4.7. Safestore

R - The following sections provide a textual description of safestore activities and requirements. Figure 4.7-1
depicts how a safestore occurs. Figure 4.6-3 in the preceding section depicts a return to a safestore.

RUN mode

Session Host

Partition A Partition B Partition C Partition N

/[/ /[—~

* Safestore * Safestore o
“ Safestore

Data Data Data

* Safestore
Data

N : i
$ Safestore _..Clock Object A
“ Data i
\Signal to do Synchronous CPUs
a salestore
r—— __——————_———_——1
I Asynchronous CPU l
L___—_—————_J S G SN WD G S
$
Safestore
$ performed during a safestore Data
* performed at a synchronous rate E
Figure 4.7-1. Taking a Safestore
\\—/i

45

OMIINAL PACE 18
OF POOR QUALITY

Safestore is taking a snapshot of the simu :tion = “ronment at consist " intervals during the simulation run
mode. The purpose of the safestore is for -cove ilowing ar expect- :ermination of the simulation. A re-
covery to a stable point before the terminauon ¢ ‘red can be accorr,. shed by initializing first to the last
datastore or initialization point and then applying . e of the last four safestores. Note that a safestore set is
much smaller than a datastore set.

4.7.1 Perform a Safestore

The Safestore interval defaults to 15 minutes. Aninstructor may set the safestore interval to a different value
via the 10S. The 108 checks the validity of the specified interval and then transmits the valid safestore interval
to RTSSW. Valid intervals range from a minimum of five minutes to a maximum of fifteen minutes in incre-
ments of a minute. RTSSW sets the safestore interval as required/requested. Each partition produces safe-
store messages at a consistent rate (minimum of 1 hertz). The safestore object determines the expiration
of the safestore interval. The Safestore object collects all safestore messages from the partitions. The soft-
ware backplane mechanism ensures that the safestore messages are time-homogeneous atthe 1 hertz rate.
The Safestore object buffers the data and outputs it to disk.

4.7.2 Return to a Safestore

The 1OS receives a return o safestore comm =nd and safestore id from the instructor. The 10S sends RTSSW

the return to safestore command andid. T~ ;afestore object opens the safestore file and reads the safestore

data from disk. The safesiore object parses the data and places it in the mailbox for all appropriate partitions.
Each partition processes (inputs) its mailbox message and self-initializes to the safestore state.

4.7.3 Partition Requirements

~ For a partition to successfully be involved in a safestore event, the following rules must be adhered to:

_ o _Reglster safestore messages withithe software backplane.
o OQutput safestore messages consistently at @ minimum of 1 hertz.

- e« Have a mailbox.
e Process safestore data from the mailbox during a 'return to safestore’.
e Self-initialize to the safestore state.

4.7.4 Safestore Notes

Four (4) safestores are maintained per training session.

CSIOP does not perform a safestore.

SNS does not perform a safestore.

Propulsion, Environment, & GNC (on the Session Host) produce safestore data.
Safestore files are not kept after a session is normally terminated.

With safestore object on an asynchronous CPU, the safestore does not disturb the RMS algorithms. However,
the safestore interval software interrupt may not be received immediately if the asynchronous CPU is "busy’.

An instructor may ‘protect’ one of the four safestores during a session. The protected safestore will not be
overwritten.

The safestore interval object will need to be partof the - ‘onous simulation in order to be aware of sir 13-
tion modes (to reset after certain modes and not issue aterrupt during a *-eeze).

To reset to a safestore, first an initialization to the originai .nitialization point (or datastore point) is perforrned
followed by the application of the latest safestore. ‘

46 ORIGINAL PAGE IS
OF POOR QUALITY

(

|
i

i

On initialization to a new datastore point (or initialization point), previous safestores are essentially flushed.
New safestores will relate to the current initialization point.

47

4.8. INTERFACE AGENTS

4.8.1 INTRODUCTION

This discussion of interface agents is limited to those innerface agents in the Full Task Trainer (FTT) of the
Space Station Verification and Training Facility (SSVTF). In particular, this discussion is limited to interface
agents that are hosted on assets with SVM.

To aid in understanding what an interface agent is and what is does (and maybe get some inkling how an inter-
face agent should do its work), the following background material about assets and interface agents is pro-
vided.

4.8.1.1 What is an Asset ??

An asset is an SSVTF FTT hardware entity attached to the real-time simulation network (RTSN) which can
be used as an element of a training session. Table 4.8—1 provides a list of the FTT assets and how many
assets may be configured into a training session. An asset cannot be configured in more than one training
session at a time. An asset may be configured into and out of an active training session.

FTT Asset Total # Min / Max # Asset Asset
Asset Owner of Asset Configuredin a with without
Class Name Instances Training Session SVM SVM
AT Session RTS 2 1/1 X
Computer (RTSC)
SNS SNS 1 0/1 X
OTW Visual VIS 1 0/1 X
CCTV Visual VIS 1 0/1 X
10S Work Station I0S 14 1/14 X
DMS String OBCS 2 171 X
(with SIB)
CA&T String USA D 1 0/1 X
Crew Station USAV 3 0/3
APM APM 1 0/1 ? ?(X)
JEM JEM 1 0/1 ? ? (X)
SMS SMTF 1 0/1 X

Table 4.8—-1 FTT Assets within a Training Session

Some assets contain the real-time system software (RTSSW) executive and communication environment
known as the Simulation Virtual Machine (SVM). These assets include the RTSC, Crew Station host (CSIOP),
and SNS. Since these assets contain the RTSSW environment, these assets are referred to as "assets with
SVM" throughout this document. Some assets, such as I0S Work Stations, contain only the SVM commu-
nication environment. In this document, there is no differentiation made between assets with SVM and asset
with only the SVM communication environment; these assets will be treated alike.

Most assets are black boxes which need to be stimulated in order to work properly in the FTT. Examples of
these black box assets include the OTW and CCTV IGs and the DMS String. Since these assets do not con-
tain the RTSSW environment, these assets are referred to as "assets without SVM" throughout this document.

All assets have the ability to operate with other assets when configured into a training session. During this
"integrated” or "configured” mode of operation, an asset may communicate with one or more other assets.

48

q\ﬂ I

Some assets have an additional ability to operate by themselves (in a "standalone” mode of operation). These
assets include the SNS, OTW and CCTV IGs, 10S Work Stations, DMS String, and SMTF. (It is expected
that the APM and JEM simulators will also have the capability of standalone operation.)

4.8.1.2What is an Interface Agent 77

An interface agent is the software that provides model data from one asset to another through a controlied
interface. In essence, an interface agent provides an abstraction of its parent asset. The asset providing the
interface agent is called the "parent asset”. The asset where the interface agent resides is called the "host
asset”. Note that the location of an interface agent (its host asset) depends on the parent asset's requirements
for integrated and standalone modes of operation and whether the parent asset is an asset with or without
SVM:; the general rule is that interface agents will only reside in assets with SVM.

Figure 4.8—1 provides a simple example of an interface agent between two assets. In this figure, Asset B has
some need (requirement) to use some data produced by Asset A. (Let's postpone discussions about impie-
menting an interface agent until later.) In order to support Asset B's need for data, Asset A employs an inter-
face agentto provide Asset B with the requiredinterface to AssetA. When Asset B needs some data produced
by Asset A, Asset B uses the interface agent to get that data. Note that in this simple example, Asset B is
an asset with SVM. - :

Figure 4.8-2 provides a general association diagram of an interface agent (a non-10S interface agent). In
this figure, the interface agentis effecting a pass—thru interface between its host asset (Asset A) and its parent
asset (Asset B). The interface agent exchanges data with some of Asset A's models (called Partition A, Parti-
tion Y, and Partition Z). The interface agent receives malfunction and enter value requests from an 1OS inter-
face agent. The interface agent receives add/drop asset commands from its Platform Manager, and retums
the asset add/drop status to both the Platform Manager and a Status and Control (SaC) agent. Note thatin
this example, Asset A is an asset with SVM.

An interface agent may play one of two roles while controlling virtually all information transmitted between
its parent asset and host asset. These two roles are:

A Simulating an asset that is not configured in the training session
B. Effecting a pass—thru interface with an asset that is configured in the training session

In a training session where a given asset is not present, as shown In Figure 4.8-3, the interface agent will
simulate the interaction between the "missing” parent asset and the host asset at some fidelity (the minimum
fidelity required for meeting the resource and consumable demands of the host asset). The fidelity of asset
simulation will depend on the requirements imposed on and capabilities of the interface agent. (Note thatthe
interface agent should use static values wherever possible when simulating its parent asset’s interface.)

In a training session where a given asset is present, as shown in Figures 4.8-4 and 4.8-5, the interface agent
will effect a high fidelity interchange between the "present” parent asset and the host asset. Note that Figure
4.8-4 shows the communication path when both assets have SVM, and Figure 4.8-5 shows the communica-
tion path when only one asset has SVM.

Asset A Asset B
data
Asset A Asset B
Model & Model

Figure 4.8—-1 Simple Example of an Interface Agent

49

Daua
Asset A
®
Add/Drop Commands
Daus
Platform — Asset B
Manager
Add/Drop -~ = T
i/Drop =~ 3 i Enter values,
Ad Malfunctions
SaC
10S
Agent Interface Agent

Figure 4.8-2 General Interface Agent Association Diagram

Asset A
Asset B
data
Asset A Asset B
Model < -— Model
data
Asset A is configured in the training session. Asset B is not configured in the training session.

Asset A is an asset with SVM, (Asset B may or may not be an asset with SVM.)

IFigure 4.8-3 Interface Agent Playing Roll as Asset Simulation

Figure 4.8—6 provides a general state diagram for an interface agent. On startup, the interface agent defaults
to simulating the parent/host asset interface. An interface agent effects the pass—thru interface when the par-
ent asset has been successfully integrated into the host asset's training session. Allowing an interface agent
to (easily) switch between the roles of an interface simulator and an interface stimulator provides for a well-
controlled, constant interface relationship between the assets.

Figure 4.8-7 shows a diagram of a better—detailed communication path between two assets with SVM when
both assets are integrated in the same training session. Note that two interface agents are employed.

50

¢

Asset A Asset B

data
Asset A AssetB
Model Model
Asset A is configured in the training session. Asset B is configured in the training session.
Asset A is an asset with SVM., Asset B is an asset with SYM.

JFigure 4.8—4 Interface Agent Playing Role as Asset (with SVM) Stimulator

Asset A
Asset B
Asset A —
Ve ot
data
Asset A is configured in the training session. Asset B is configured in the training session.
Asset A is an asset with SVM., Asset B is an asset without SVM.

[Figure 4.8-5 Interface Agent Playing Role as Asset (without SVM) Stimulator

N
Exi all modes, malfunction, entm
X1st ’
startup Interface
Simulated

drop

Interface
Pass—thru

all modes, malfunction, enter value

Figure 4.8-6 General Interface Agent State Diagram

51

Asset A

Asset B

Software Backplane

Software Backplane

Model P

() (

/,.—-—-r.

Ry

Model P [/

types
Package

—— —

"with” dependencies

t
Package

Interface Agent | ./

Figure 4.8-7 General Interface Agents within Two Assets with SVM

52

(

(

4.8.2

Rules
1.

INTERFACE AGENT GENERAL NOTES

All output message types in a partition’s interface are defined via Interface Definition Types Packages.
The Distributed Identifier Specification (DIS) creates identifiers (Message_|Ds) for the messages
listed in a partition’s interface definition packages. The SVM communication software uses these mes-
sage identifiers to determine the location of the output messages. A partition creates the actual output
message object (the data itself) using the SVM communication software. Interfaces between partitions
are effected by registering input and output identifiers with the SVM communication software.

Itis greatly desired that a training session should not stop when an assetgoes down or goes improperly
off-line.

SGMT will be provided on demand from a generic clock model.

Assumptions

1.

Other

Generally, do not mix data at different rates in the same message on the LAN. The idea here is to en-
sure that high—rate data is not starved by waiting for low-rate data to be ready for transfer in the same
data block. One simple work around is to issue the data block at the higher rate, and only update the
low-rate data as necessary in the block. Of course, the receiver must be ready to deal with getting
multi-rate data in a data block.

An interface agent (or at least some part of an interface agent) will be packaged as (and treated like)
a partition. An interface agent will register with SVM communication and executive software in the
same manner as a partition. An interface agent can do sub—scheduling within itself where needed.
(This capability for sub—scheduling within a partition may be provided by the SVM executive software.)

Generally, there will be only one interface agent per asset class. The interface agent shall control virtu-
ally all communication between the host asset and the parent assets.

Aninterface agent is responsible for resolving word size or word definition differences between the host
and parent asset via bit-fiddling, byte—swapping, or whatever other means are available to the inter-
face agent. If the byte—swapping or bit-fiddling is a general problem of the asset interface (i.e., it's a
problem for every basic data type), then the Network Services part of Connectivity might be able to
perform these actions on all data transferred across the interface. (Network Services will not be able
to handle type—specific conversions — it’s all or nothing.)

An interface agent helps to optimize FDDI packets (helps reduce amount of litle packets sent across
LAN), thus helping the RTSN and GP LAN to provide better response to every user.

Maode transitions commands (from the master Platform Manager) should be “disabled” during asset
add and asset drop activities. This will allow the asset to be added or dropped in a "stable” mode. Also,
the master Platform Manager should not issue asset add and drop commands while a Datastore or
Initialization is occurring.

Notes

All interface agents provide the following four main capabilities:

1.

2.
3.
4

Simulating an asset interface

Effecting pass—thru interface for an asset (with or without SVM)
Adding an asset

Dropping an asset

Each capability is discussed at length in the following sections. Whether an interface agent is simulating an
asset interface or effecting a pass—thru interface, it must still deal with the issues of communication, modes,
malfunctions, and user-requested data entry.

53

4.8.3 INTERFACE AGENT FOR ASSET WITH SVM

4.8.3.1 Simulating Interface
483.1.1 Communication

The interface agent shall use the SVM communication software to communicate with other partitions. No
moding of the parent asset is performed during the asset interface simulation.

During the startup phase, the interface agent must set up all communication paths (for simulation of the inter-
face as well as effecting a pass—thru interface) before beginning its simulated interface behavior. This allows
for a quick (and controlled) behavioral change into the pass-thru interface behavior when the parent asset

is added.
483.1.2 Moding

The portion of the interface agent that Is periodic (the partition portion) shall respond to modes (just like a nor-
mal partition). The interface agent's particular interface modelling responsibilities depend on the required fi-
delity of the interface simulation. Note that interface agents must read their mailbox, perform an asset add
upon request, and return the success/fail status of the add to OSS (SaC) and the master Platform Manager.
In the unlikely event that an asset drop is requested, the interface agent should return an error status (i.e.,
requested asset is not currently configured in training session) to both the OSS (SaC) and master Platform
Manager.

Itis anticipated that interface agents (for assets with SVM) will not have to do anything for Step Ahead while
simulating the interface.

When the "simulated interface” contains data that should be Datastored, the interface agent must register
each Datastore item with the DIS (via DIS—related packages). The interface agent must provide the software
to process the return—to—datastore data from its mailbox.

When the “"simulated interface” contains data that should be Safestored, the interface agent must register
each Safestore item with the DIS (via DIS—related packages) as well as with the SVM communication soft-
ware. Interface agents must update these safestore terms at a minimum of once a second (at 1 hertz). The
interface agent must provide the software to process the return—to—safestore data from its mailbox.

Upon entering TERMINATE mode, an interface agent should stop simulating the asset interface. (Essentially,
the interface agent should quit.) There is no requirement for an interface agent to shutdown its parent asset
when the asset is not configured in the training session.

48.3.1.3 Malfunctions

When the "simulated interface” contains data that is affected by malfunctions, the interface agent must regis-
ter each malfunction with the DIS (via DIS—related packages). An interface agent must provide the software
to effect the malfunction in the simulated interface. An interface agentshould inform the IOS when a malfunc-
tion request (for the simulated interface) cannot be serviced.

In the event that some malfunction is processed by both the interface agent (during Interface simulation) and
its parent asset (when configured in the training session), the interface agent shall issue that malfunction re-
quest to its parent asset.

Maybe malfunctions shouldn't be handled (anything really done) by interface agent when it is simulating the
assetinterface: Why should an interface agent care about malfunctioning something in a lo w-fidelity interface
?2?

Maybe the interface agent (for a parent asset with SVM) won't have to deal with malfunction logic: the I0S
may not allow selection of malfunctions which are hosted (belong to) an asset with SVMwhich isn't configured
into the training session.

483.1.4 User-Requested Data Entry

54

|

i)
!

A4

v

When the "simulated interface” contains data that can be over—written by an instructor or operator (via user—
requested data entry), the interface agent must register each item (targeted for a controlled value override)
with the DIS (via DIS—related packages). Aninterface agent must provide the software to enter the user-sup-
plied data (from its mailbox) to the simulated interface. An interface agent should inform the 10OS when an
enter value request cannot be serviced.

4.8.3.2 Effecting Pass—Thru Interface

48321 Communication

The interface agent shall use the SVM communication software to communicate with other partitions. The
communication paths do not need to be set up at this point, since they were set up during the startup phase.

48322 Moding

All mode transition commands (including requested mode and mode-specific parameters) shall be sent di-
rectly from the master Platform Manager to the asset's Platform Manager; the interface agent is not involved

with this message transfer. (Note that each asset with SVM shali have a Platform Manager.)

The portion of the interface agent that is periodic (the partition portion) shall respond to modes (just like a nor-
mal partition). The interface agent’s particular interface modelling responsibilities depend on the required fi-
delity of effecting the pass—thru interface. Note that interface agents must read their mailbox, perform an as-
set drop upon request, and return the success/fail status of the drop to 0SS (SaC) and the master Platform
Manager. In the unlikely event that another assetadd is requested, the interface agent should return an error
status (i.e., requested asset is not currently configured in training session) to both the OSS (SaC) and master
Platform Manager.

Itis anticipated that interface agents (for assets with SVM) will not have to do anything for Step Ahead while
effecting a pass—thru interface.
Since models within the asset shall register Datastore and Safestore terms (local to that asset), the interface

agent will not have to do anything for Datastore or Safestore. While effecting a pass—thru interface, the inter-
face agent will not have to update its "simulated interface” data terms.

48323 Malfunctions

For an asset with SVM, the interface agent is not required to register malfunctions (as long as the interface
agent does not have to malfunction the "simulated interface™).

In the event that some malfunction is processed by both the interface agent (during interface simulation) and
its parent asset {(when configured in the training session), the interface agent shall issue that malfunction re-
quest to its parent asset, upon request by the 10S.

48324 User-Requested Data Entry

For an asset with SVM, the interface agent is not required to register data items targeted for a controlled value
override.

4.8.3.3 Adding Asset

The master Platform Manager (Asset Manager), upon command from the OSS, will issue an *Add Asset" re-
quest to the interface agent. This request will identify which asset instance (i.e., which unique asset) should
be added into the training session. An asset may be added only during FREEZE and RUN modes. Note that
prior to issuing the "Add Asset” request, the master Platform Manager will have ensured (with OSS SMaCT
or SaC help ?) that the asset has successfully completed its Startup Activity (including the PROGRAM ELAB-

55

ORATION, SETUP/REGISTER /O, and CREATE DATA steps) and that it's communicating on the RTSN.
The master Platform Manager shall also be responsible for ensuring that an asset add will not occur during
a Datastore operation. The interface agent should be simulating the asset interface at this time.
Responses of interface status (Asset Add successful, Asset Add failed, etc.) during an Asset Add shall be sent
from the interface agent to both SaC and the master Platform Manager (Asset Manager).

When adding an asset during run, one—way communication is first established with the asset. Data is passed
to the asset so that it can initialize itself with the ongoing simulation. When everything is synchronized and
itis time to join the asset to the simulation, the communication becomes two—way and the interface agent acts
as a pass—thru for the data transfer.

When a new asset is being added, there may be a need for a "controls notin agreement” capability. this would
involve the 10S, the interface agent, and the actual asset. This capability would allow the asset to be "in config-
uration™ prior to being added so that a large jump would not be detected when they were actually added (if
the asset was not near the current simulated configuration). [Aside: according to SET team, we will ignore
the controls not in agreement capability.]

4.8.3.4 Dropping Asset

The master Platform Manager (Asset Manager), upon command from the OSS, will issue a "Drop Asset” re-
quest to the interface agent. This request will identify which asset instance (i.e., which unique asset) should
be dropped from the training session. An asset may be dropped only during FREEZE, RUN and TERMINATE
modes. The master Platform Manager shall be responsible for ensuring that an asset drop will not occur dur-
ing a Datastore operation. The interface agent should be effecting a pass—thru interface at this time.

Responses of interface status (Asset Drop in progress, Asset Drop successful, Asset Drop failed, etc.) during
an Asset Drop shall be sent from the interface agent to both SaC and the master Platform Manager (Asset
Manager).

56

(

|

I
i

(

|
1

4.8.4 INTERFACE AGENT FOR ASSET WITHOUT SVM

4.8.4.1 Simulating Interface

48411 Communication

The interface agent shall use the SVM communication software to communicate with other partitions. No
moding of the parent asset is performed during the asset interface simulation.

During the startup phase, the interface agent must set up all communication paths (for simulation of the inter-
face as well as effecting a pass—thru interface) before beginning its simulated interface behavior. This allows
for a quick (and controlled) behavioral change into the pass-thru interface behavior when the parent asset

is added.
48412 Moding

The portion of the interface agent that is periodic (the partition portion) shall respond to modes (just like a nor-
mal partition). The interface agent's particular interface modelling responsibilities depend on the required fi-
delity of the interface simulation. Note that interface agents must read their mailbox, perform an asset add
upon request, and return the success/fail status of the add to OSS (SaC) and the master Platform Manager.
In the unlikely event that an asset drop is requested, the interface agent should return an error status (le.,
requested asset is not currently configured in training session) to both the 0SS (SaC) and master Platform
Manager.

Itis anticipated that interface agents (for assets without SVM) will nothave to do anything for Step Ahead while
simulating the interface.

When the "simulated interface” contains data that should be Datastored, the interface agent must register
each Datastore item with the DIS (via DIS—related packages). The interface agent must provide the software
to process the return—to—datastore data from its mailbox.

When the "simulated interface” contains data that should be Safestored, the interface agent must register
each Safestore item with the DIS (via DIS—related packages) as well as with the SVM communication soft-
ware. Interface agents must update these safestore terms at a minimum of once a second (at 1 hertz). The
interface agent must provide the software to process the return—to—safestore data from its mailbox.

Upon entering TERMINATE mode, an interface agent should stop simulating the asset interface. (Essentially,
the interface agent should quit.) There is no requirement for an interface agent to shutdown its parent asset
when the asset is not configured in the training session.

48.4.1.3 Malfunctions

When the "simulated interface” contains data that is affected by malfunctions, the interface agent must regis-
ter each malfunction with the DIS (via DIS—related packages). An interface agent must provide the software
to effect the malfunction in the simulated interface. An interface agent should inform the IOS when a malfunc-
tion request (for the simulated interface) cannot be serviced.

The IOS shall send malfunction requests to the interface agent (in accordance with the malfunction’s DISreg-
istration). During RUN and FREEZE modes, the interface agent shall read its mailbox and effect maifunction
(for the simulated interface) as required.

In the event that some malfunction is processed by both the interface agent (during interface simulation) and
its parent asset (when configured in the training session), the interface agent shall issue that malfunction re-
quest to its parent asset.

48414 User—Requested Data Entry

When the "simulated interface” contains data that can be over—written by an instructor or operator (via user-
requested data entry), the interface agent must register each item (targeted for a controlled value override)

57

with the DIS (via DIS-related packages). An interface agent must provide the software to enter the user—sup-
" plied data (from its mailbox) to the simulated interface.

The 10S shall send enter value requests to the interface agent (in accordance with the data item's DIS regis-
tration). During RUN and FREEZE modes, the interface agent shall read its mailbox and process the enter
value requests (as allowed by the peculiar capabilities provided by the asset without SVM). The interface
agent shall inform the 10S when an enter value request (for the simulated interface) cannot be serviced.

4.8.4.2 Effecting Pass—Thru Interface
48421 Communication

The interface agent shall use the SVM communication software to communicate with other partitions.

During the startup phase, the interface agent must set up all communication paths (for simulation of the inter-
face as well as effecting a pass—-thru interface) before beginning its simulated interface behavior. This allows
for a quick (and controlled) behavioral change into the simulated interface behavior when the parent asset

is dropped.
48422 Moding

When an asset without SVM is integrated, its interface agent must deal with mode transition logic: it should
know how to "mode” its parent asset. In a sense, the interface agent acts as a pseudo—Platform Manager
for the asset.

During INITIALIZATION (including Self Initand System Init) the interface agent shall receive initialization data
from its mailbox and apply it to the host-to—parent transfer buffers (as appropriate). Thus, the interface agent
shall stimulate asset so that it receives and processes the initialization data until the asset reaches a steady
state_ e B e T =2, F . SIEUETESTIL T ntl 0 T TPl e R -

During FREEZE (and HOLD and STEP AHEAD), the interface agent must keep the asset running (either con-
tinue data transfers, or command the asset to freeze). In some cases, additional messages may be sent to
trick asset into its "freeze” logic. Despite the method used, the interface agent should take care of all special
processing to ensure that the asset is frozen when the training session enters FREEZE.

The interface agent must register all necessary DATASTORE terms with the DIS. These terms should be
terms within the asset's pass—thru interface or derived from data within the asset’s pass-thru interface.

During RUN, the interface agent should communicate with its asset as required to effect the pass-thru inter-
face. On a FREEZE to RUN transition, the interface agent should take care of all special processing to ensure
that the asset begins interface processing when the training session enters RUN mode.

If required, the interface agent must register all necessary SAFESTORE terms with the DIS. Note that it is
not generally expected that assets without SVM will have safestore data.

48423 Malfunctions
The interface agents must register all malfunctions for its parent asset. This is necessary since the parent
asset is unable to register malfunctions by itself. Each malfunction must be registered with the DIS.

The 10S shall send malfunction requests to the interface agent (in accordance with the malfunction’s DIS reg-
istration). During RUN and FREEZE modes, the interface agent shall read its mailbox and maifunction the
asset as required. The interface agent mustknow how to effect malfunctions on its parentasset. The interface
agent shall inform the IOS when a malfunction request cannot be serviced.

48424 User-Requested Data Entry

The interface agent must register each data item (targeted for a controlled value override) with the DIS. This
is necessary because the parent asset is unable to register these terms by itself.

58

[m—

The 10S shall send enter value requests to the interface agent (in accordance with the data item’s DIS regis-
tration). During RUN and FREEZE modes, the interface agent shall read its mailbox and process the enter
value requests (as allowed by the peculiar capabilities provided by the asset without SVM). The interface
agent shall inform the IOS when an enter value request cannot be serviced.

4.8.4.3 Adding Asset

The master Platform Manager (Asset Manager), upon command from the QSS, willissue an "Add Asset” re-
quest to the interface agent. This request will identify which asset instance (i.e., which unique asset) should
be added into the training session. An asset may be added only during FREEZE and RUN modes. Note that
prior to issuing the "Add Asset” request, the master Platform Manager will have ensured (with OSS SMaCT
or SaC help 7) that the asset has successfully completed its Startup Activity (whatever this means for the asset
without SVM) and that it's communicating on the RTSN. The master Platform Manager shall also be responsi-
ble for ensuring that an asset add will not occur during a Datastore operation. The interface agent shouid be
simulating the asset interface at this time.

Responses of interface status (Asset Add successful, Asset Add failed, etc.) during an Asset Add shall be sent
from the interface agent to both SaC and the master Platform Manager (Asset Manager).

When adding an asset during run, one-way communication is first established with the asset. The interface
agent shall deal with foreign connections, as required. Data is passed to the asset so that it can initialize itself
with the ongoing simulation. When everything is synchronized and itis time to join the asset to the simulation,
the communication becomes two—way and the interface agent acts as a pass—thru for the data transfer.

When a new asset is being added, there may be a need for a "controls notin agreement” capability. this would
involve the 10S, the interface agent, and the actual asset. This capability would allow the asset to be "in config-
uration™ prior to being added so that a large jump would not be detected when they were actually added (if
the asset was not near the current simulated configuration). [Aside: according to SET team, we will ignore
the controls not in agreement capability.]

4.8.4.4 Dropping Asset

The master Platform Manager (Asset Manager), upon command from the OSS, will issue a "Drop Asset” re-
quest to the interface agent. This request will identify which asset instance (i.e., which unique asset) should
be dropped from the training session. An asset may be dropped only during FREEZE, RUN and TERMINATE
modes. The master Platform Manager shall be responsible for ensuring that an asset drop will not occur dur-
ing a Datastore operation. The interface agent should be effecting a pass—thru interface at this time.

Responses of interface status (Asset Drop in progress, Asset Drop successful, Asset Drop failed, etc.) during
an Asset Drop shall be sent from the interface agent to both SaC and the master Platform Manager (Asset
Manager).

If a hardware device is attached, the interface agent may need to shutdow'n"that device as part of the asset’s
drop procedure.

59

'4.9. Asynchronous /O

Asynchronous VO provides real-time disk i/o operations for real-time models. Disk i/o operations are usually
time consuming operations. The calling model must wait for the i/o operation to complete before it can contin-
ue processing. In a real-time simulation, such i/o delays cause overruns to occur and can not be tolerated.
However, asynchronous i/o permits real-time models to ‘post’ /o operations to a shared memory area. A
partition in the asynchronous processor which is not bound by real-time time constraints processes the
posted i/o operations. The real-time model making the request picks up the result of the /o request on a sub-
sequent execution. For the model, the time consumed for /o operations is that for memory to memory data
transfers which is much more efficient than memory to/from disk data transfers.

Asynchronous I/O permits a real-time model to open a file for read access or write access, not both simuilta-
neously. The data is accessed as in stream i/0. Sequential reads/writes of data in terms of bits/bytes is per-
formed. The model is responsible for file format and data type information.

Real-time application models requiring disk access use the services of the Realtime_lo package. Real-
time_lo operations post /o requests in a shared memory buffer area. Several models, within the same or
different CPUs, may make real-time i/o requests. Builtinto CPU 0 is Async_lo_Partition. Async_lo_Partition
scans the shared memory buffer area for i/o requests and processes them appropriately (see figure 4.9-1).

Models requiring disk i/0 should with package Realtime_lQ. For each file that is to be operated on simulta-
neously, the model should Register a buffer area specific to the file in Set_Up. Update should be called in
each simulation mode until a Status of Registered is received. Once the buffer for a file has been registered,
the file may be opened (Open) or created (Create). Update should be called until a Status of Opened or
Created is returned. Before data is read, a check should be made to ensure There_ls_Data_For the read and
that the End_Of_File has notbeen reached. The Read may then be performed. Again Update should be called
before the next call to any Realtime_lo service. Similarly, for a write, a check should be made to ensure
There_Is_Room_For the data to be written in the buffer area for this file. The Write may then be performed
and a call to Update made before another Realtime_lo operation is made. The file may be closed (Close) or

Shared Buffer Area

CPU-X (Realtime)

CPU-0 (Async)

Model

Async_1O_Partition

Realtime_I10

Part of Async_Io operations

] Figure 4.9-1 Asynchronous I/O Overview

60

(

deleted (Delete) following the completion of all requested read or write operations. Once a file has been
closed or deleted, the Realtime_lo object may be used to operate on another file.

The Async_lo_Partition processes /o operations posted by the Realtime_|O package. Async_lO_Partition
executes at 1 hz. Thus, several i/o requests may have been posted by real-time models between
Async_|O_Partition executions. Async_|O_Partition scans the shared memory buffer areas and processes
any posted i/o operations. The response to a Realtime_lo call is not completed until Async_|O_Partition has
executed. A requesting model may have to call Realtime_lo.Update several times before it receives a com-
pleted status. However, Reads may be done by the real-time model until its buffer area is depleted without
an execution by Async_lO_Partition; similarly, writes may be performed until the bufter for the file is full without
an execution by Async_lO_Partition.

The Realtime_lo package spec follows:

with System;
with Io_Exceptions;

package Realtime_To is
type File_Type is limited private;
type File Mode is (In_File, Out_File};
type File Size is (Small, Large); -- estimated buffer size needed

type File_Status is (None, Error, Registering, Registered, Creating,
Created, Opening, Opened, Writing, Written,
Reading, Read, Closing, Closed, Deleting, Deleted);

--] Register: allows use cof other Realtime_Io routines.

-1

--] *** Register must be the first Realtime_IO routine ***
--| *** called. It must be called during Set_Up. bl

e e . o e Y o o o o o T e o o e S

procedure Register (File : in out File_Type;
Mode : in File Mode := Out_File;
Size : in File_size := Small);

--{ Update: allows Realtime_IO to update the File object.

--| *** (Update must be the first Realtime_IO routine **¥
--f{ *** called in a given period for all modes other ***
--| *** cthan Set_Up. ol

procedure Update (File : in out File_Type);

procedure Destroy (File : in out File_Type);

procedure Create (File : in out File_Type; Name : in String);

procedure Open (File : in out File_Type; Name : in String);

procedure Delete (File : in out File_Type);

procedure Read (File : in out File_Type;
Address : in System.Address;
Size_In_Bits : in Naturalj;

procedure Write (File : in out File_Type;
Address ¢ in System.Address;
Size_In_Bits : in Natural):

function Mode (File : in File_Type) return File_Mode;

function Name (File : in File Type) return String;

function Status (File : in File_Type) return File_Status;

function End_Of File (File : in File Type) return Boolean;

function There_Is Room For (File : in File_Type; Number Of_Bits : in Natural) return Boolean;
function There_Is Data For (File : in File_ Type; Number Of Bits : in Natural) return Boolean;

Name_Error : exception renames Io_Exceptions.Name_Error;
Use_Error : exception renames Io_Exceptions.Use Error;
Status_Error : exception renames Io_Exceptions.Status_Error;
Mode_Error : exception renames Io_Exceptions.Mode_Error;
Device Error : exception renames Io_Exceptions.Device Error;

End_Error : exception renames Io_Exceptions.End_Error;
Data_Error : exception renames Io_Exceptions.Data_Error;

Mismatch_Error : exception;

private
type 5S5tate;
tyce File_Type is access State;

end Realtime_Io; -- package spec

62

4

—-| Abstract: This package provides a real-time interface for models wanting
== real-time write capabilities.

--1 Warnings: Async_lo Partition and Realtime_Io are co-programs.
-1 Realtime_Io loads data into a shared buffer_ area and
--1 Async_Io_Partition processes that data.

5. NON-REAL-TIME SECTION

5.1. Overall Structure

<o be finalized in later revision>
Non-real-time (NRT) components are constructed in @a manner similar to real-time (RT) components. Since
the NRT system doesn't require the RT Thread Executive, messaging mechanisms are a little more relaxed
(see section 5.4.1). Missing from NRT components are requirements to have “Update” or “Re-
quest_State_Change” operations or Interface Definition Packages. Updating of components is accom-
plished entirely by the controlling component (Operational Component) calling operations of subordinate
instances (See Fig 5-1 — Structural View of an Operational Component).

5.2. Classes and Instances

B <o be finalized in later revision>
Like the previous section, all instances exist via creation from ADTs or Generic ADTs.

5.3. Inheritance and Composition

B <To be finalized in later revision>

Both inheritance and composition of objects have played alarge role in the analysis of our systems. To convert
this effort to Ada, we must address the needs of efficiency and maintainability, as well as the need to satisfy
object—oriented approaches.

Composition is fairly straightforward, needed classes are “WITHed", then objects are declared within the
structure of the newer class.

Inheritance is another matter completely. There are several documented forms of accomplishing inheritance
using Ada — each has their advantages and disadvantages.

The approach used by Grady Booch [Booch 91] is what we will be using for the SSVTF. Although more wordy
that other approaches, it lends itself to the easiest maintenance (and easiest migration should we go to Ada
9X, the next version of Ada). There are several other methods to accomplish inheritance, and itis worth inves-
tigation by the curious. For further reading on alternate approaches to inheritance, see [Atkinson 91], [Hirasu-
na 92], [Perez 88}, or [Seidewitz 92].

Grady Booch states, "In practice, we find it common to design as if inheritance were possible, then use a vari-
ety ofimplementations to fake it if the language does not directly support inheritance.” [Booch 91] This is ex-
actly the case for SSVTF using the current version of Ada. In order to supportinheritance init's simplest form,
we will use packages built from the class structures (or possibly generic class structures) defined in section
5.5 "Templates and Guidelines” along with "pass—through” calls. See Appendix lll, Create operation, Les-
son_Class package for an example of "pass—through” calling.

5.4. Operational Components

B <To be finalized in later revision>

Operational Components represent the "main” program in Ada. This is typically an ASM (called from a proce-
dure) that controls all instances of classes — much like the real-time Partition.

5.4.1 Communicating with Other Operational Components/Partitions

B <To be finalized in later revision>

There are three mechanisms by which Operational Components may communicate: file exchanging, utilizing
the real —time interface, or POSIX Interprocess Communication. Each mechanism has it’s benefits and draw-
backs, which will be explained in detail in the next sections.

64

(,u ol
.

5.4.1.1 File Exchanging
<To be published in next revision>

5.4.1.2 Utilizing the Real-Time Interface
<To be published in next revision>

5.4.1.3 POSIX Interprocess Communication
<To be published in next revision>

5.5. Templates and Guidelines

The following example is intended to be used as a prototype template for building ADTs in non-reai-time sys-
tems:

with std_Eng_Types;
package Non_Real_Time_Template Class is

package SET renames Std Eng_Types; -- Simplifies Parameter names
type Valve_State is (Cpen, Closed);
type Object is limited private; -- limited private is preferred.

-- private may be used,
-- unprotected types require SRB approval
2222220220020 RR RS R Modifiers 2228222 RS ARRARRRRRRRRR RS G S
procedure Create (Instance : in out Object);
-- AVOID using generics if thils form can be used to parameterize
the object.
procedure Destroy {(Instance : in out Object);
procedure Set Valve (Instance : in out Object;

. To : in _ Valve_State);
procedure Set Pressure (Instance : In out Object;
To Tt in SET.Psl);

et At 220202 RRRRRRRRE RS R Selectors **ﬁ*iii*i*tii*'tttfj*'ttl‘tt*t P
-- NOTE: These are only examples. Note that all operations here

-- return primitives. A primitive is either a non-numeric

- type defined in package Standard, a previously declared

-- enumerated type within this specification, or a type

-- defined inside the package Std_Eng_Types.

function Valve_Is Open (Instance : in Object) return Boolean;

function Pressure_Of (Instance : in Object) return SET.Psi; '
private

type State;

type Object is access State; -- Note that the "attributes” of the object

-- are Iinvisible in the specification!
end Non Real Time_Template Class;

m POSIX RT

|

|

|
- Interprocess ; Thread

I

|

Comm Exec
(If necessary
(If necessary)

(If necessary)

Operatio'nal Component

K‘-l,(:;w\kadge"

Controlling
Class Instances

Figure 5-1 — Structural View of an Operational Component

66

“J

6. BIBLIOGRAPHY

[Atkinson §1] Atkinson, Colin, Qbject-Oriented Reuse. Concurrency and Distribution, pages 183-228.
ACM Press, NY, NY; 1991.

[Booch 91] Booch, Grady, Object Oriented Design with Applications, pages 443—470. Benjamin/Cum-
mings Publishing Co., Menlo Park, CA; 1991.

[Gross and Stuckey, 1990] Gross, David C. and Stuckey, Lynn D., Jr., Ada Types: The Cornerstone of
Simulation Modeling. (Source?).

[Hirasuna 92] Hirasuna, Michael, "Using Inheritance and Polymorphism with Ada in Government Spon-
sored Contracts”, Ada Letters, Volume 12, Number 2, pages 43-56.

[Perez 88] Perez, Eduardo Perez, "Simulating Inheritance with Ada”", Ada Letters, Volume 8, Number 5,

pages 37-46, 1988.

[Seidewitz 92] Seidewitz, Ed, "Object—Oriented Programming with Mixins in Ada”, Ada Letters. Volume
12, Number 2, pages 76-90.

67

|w
li

¢

7 APPENDIX | - ADA STRUCTURAL TEMPLATES

The following templates show the general Ada structural form for the class structurss and partitions.

7.1Class Template

The following example is intended to be used as a template for building ADTs in real-time systems. The ADT
package exports an object of type "Object” and operations on that object. The operations are divided into 4
major categories — create, request state change, update, and selectors. The create is used to elaborate/ini-
tialize an instance. Request state change procedure(s) provide the capability of aperiodically modifying an
instances state (such as the insertion of malfunctions or providing reset values). The Update procedure(s)
iterate the instance of time. The selectors provide access to values held within the internal state of the

instance.

wit
pac

private

h Std_Eng_Units;

kage <rame>_Class is
package Seu renames Std_Eng_Units; --Simplifies parameter names.
cype Object is limited private; --Limited private is preferred.

1

type Commands is {(Reset, Malfl, Malf2, etc);

IZ2Z 2R X RS R R RRRRRRER SR REEEE S ifier IZX2E SR EEERSES RS RRS RN ARR AR ERA S
Moditilers

procedure Create (Instance : in out Object:
Opt_Config_Varl : in Seu.Feer;
Cpt_Config_Var2 : in Seu.Psi;
Parent : in String):

procedure Request_State_Change

(Instance : in out Object;

Command : in Commands;

Input_l : in Seu.Feet := 0.0;
Input_2 : in Seu.Psi = 0.0);

-- Used to modify the state of the instance. Cperation is performed
-- aperiodically (i.e. applying a malfunction).

procedure Update (Instance : in out Object;
Delta_Time ¢ in Seu.Seconds;
Input_One : in Seu.Feetl;
Input_Two : in Seu.Psi);

I A2 22222 22822 X022 SR 2 Seleczors AAARRRAREERANRRAR A A AN RN A AR T AN

function Is_Selectorl {(Instance : in Object] return Boolean;
function Is_Selector2 (Instance : in Object) return Seu.Feet;

type Object is record

State_Var_l : Seu.Feet = 0.0; --Note: Always supply
State_Var_2 : Seu.Psi = 1.0; -- default values.
State_Var_3 : Boolean = False;
end record;
end <name>_Class;
-=1
--! Apstract : This is a general template form for a class structure. Class

structures should have this form in general when implemented.
The actual class may have different routines, but each class

should have Create, Request_State_Change, Update, and selector
routines that basically follow this pattern. This pattern will

provide consistency for the software implementation of class

TTuires. = =

~

rpackage body <name>_Class 1is

LA RS R SRS RAREERREERERARR AR AREs AR R SRR R R R R R R R AR R R

procedure Create [Instance : in out Cbiect;
Opt_Config_Varl .: in Seu.Feet;
Cpt_Config_Vvar2 : in Seu.Psi;
Parent :in Scring} is
regin
null; -- setup/init code goes here.

end Create;

AAAAARSASAAAAERESEEREEAREREAREEE S SRR R SRR R R N R R R R R Y

procedure Regquest_State_Change

{Instance : in out Chjecr;

Command : in Commands;

Inpuc_l ¢ in Seu.Feet := 0.0:
Iinpuc_2 :in Seu.Psi := 0.0} is

begin
case Command is
when Reset => --reset code goes here.
when Malfl => --malf 1 insertion goes here.
when Maif2 => --malf 2 insertion goes here. i e |
when ...; '
end case;
erd Request_State_Change;

J— ﬁ**.*tl!ﬂ**'*tit**i?t'Qtt'*tt**tti!'!t*ilt!!'*t!'**Qtt*ti'ttt*tti*i'llt'ti

procedure Update {Instance t in out Object;
Delta_Time ¢ in Seyu, Seconds;
Input_°Cne ¢ in Seu.Feet;
Input_Two : in Seu.Psi} is
begin
rull; --update code goes here.

end Update:;

LA ASALES RS R SRS ERR RS R AR SRR R R 2R R R LSRR RE TR IR R R IR R R I GG

funcrtion Is_Selectorl {(Instance : in Object) return Boolean is
begin

return Instance.State_Var_3;
end Is_3electorl;

—_ ﬁ'i*?i't*i""t*'tnt'ltt'*tt"tttt*tt*ii*"ﬁi*it*t'Itti"t'*ttitttiti'tttt
- . ” N . -~ N
tunction Is_Selector2 {(Instance : in Object)} return Seu.Feeft is
begin

return Instance.State_Var_i;
end Is_Selector2;

end <name>_~Class;

ORIGINAL PAGE IS
OF POOR QUALITY

\“ !

7.2Class Template With Computed Period

The following class template is similar to the class template shown above except for the addition of a com-
puted period capability. This capability allows an instance to be configured to run at a slower harmonic rate
than the parent and at a relative period offset from the parent. This structure may be required if varying rate
objects are placed under one rate-monotonically scheduled partition. This should be used in exceptional
cases only. Note that this form will cause the partition modeler to perform manual period—leveling within the
scope of the partition. The worst case period must then be used for RMS time allocations.

Two data types are provided in "Timer_Services_Class” (8.5) that support this option — "Rates” and "Peri-
od_Offsets”. In the "Create” operation of the class structure, three parameters are shown - "Subrate”’, "Peri-
od_Base_Time”, and "Period_Offset’. "Subrate” specifies the rate relative to the parent base rate that the
instance should update. The default value is “full” so thatif the user does not wantto use subrate scheduling,
nothing has tobe encoded and the instance will work normally. Any value passedin other than *full” will enable
the subrate scheduling feature. "Period_Base_Time"is the base period rate of the parent(i.e. the RMS sched-
uled period of the partition in seconds). "Period_Offset” is the Nth period relative to the parent base period
that the instance should update. This number is valid from 1 to (1/rate) of the subrate (i.e. 2, 4, 8, 16, 32, or
64).

For example: Assume apartition'sbase RMS period is 25 Hz (40 ms). Ifan objectinstance within the partition
needs to run at a period of about 6 Hz (160 ms) or "quarter” rate, then the instance would be created using
the following code segment:

Class.Create (Instance => Instance,
Subrate => Quarter,
Pericd_Base_Time => 0.04,

v Vv

Period_Offset 3);
The period offset of 3 would cause this instance to update on the third period of every consecutive 4 period
cycles from the parent. ** Note that internally the class does not update using a counter (count 1..4, on 3
execute) —the update is performed based on delta time. This addresses the concern thatif the parent "jJumps
ahead in time”, the object will update based on that jump time, not the base period and count. The concept
of passing delta time still applies completely.

For this template, the partition must run at the fastest rate required by the entire system. A service package,
Timer_Services_Class (8.5), is used to provide the mechanism to run class instances defined by the partition
at a slower, harmonic relative rate. Using this mechanism, there are no issues at the first level of class com-
position below the partition level. However, for composition elements past the first level, several scheduling
and timing issues arise. The recommendations are that only the first level below the partition be subsche-
duled, and that if odd scheduling rates are required, the model should be flattened to address the real-time
execution concerns.

with Std_Eng_Units;
with Timer_Services_Class;
package <name>_Class is

package Seu renames Std_Eng_Units; --Simplifies parameter names.
package Services renames Timer_Services_Class: --Simplifies names
type Cbject is limited private; —~-Limited private is preferred.

type Commands is (Reset, Malfl, Malf2, etc);

procedure Create (Instance : in out Object;
Opt_Config_varl : in Seu.Feer;
Cpt_Config_var2 : in Seu.Psi;
Parent : in S:rinq}

--3iTrace lin paramecers: --
Jucrate Jervices.Rates 1= Ser
Pariosd_Base_ Seu.Seccnds = 0.0,
Ferisd'orffset :in Services.Perisd_Cffsets ::z 1};
privace
type Cphiect is record
Timer 1 Fervizes.Chiect; --3ubrate schedule instance

end reccerd:;
end <name>_Class;

--i Abstract i This form of the class structure allows instances to run at
- slower harmonic rates from the calling model. This form will
-—1 allow an instance to run slower than the parent and at a

-=1 specified period offset from the parent. Note that the

-1 instance must be able to complete within the period of the
--1 parent! Note also that at Create, the timing parameters are
~--1 defaulted to update at the same (Full) rate of the parent.

--i Warnings : None.

package body <name>_Class is

ti"tl'*t'**t*it!****tt*ttti"t.'il'*i*itt't*t*t'ti*ﬁ'!ti'ti'i"ﬁ*ti'**ﬁi*

precedure Create {Instance : in out Objecr:
Opt _Config _Varl : in Seu.Feet;
Opt_Config_var?2 : in Seu.Psi;
Parent :in String;
Subrate : in Services.Rates 1= Services.Full;
Period_Base_Time : in Seu.Seconds 1= 0.0;
Period_Offset : in Services.Period_Offsets := 1);

begin

-- Create the timing parct,

Services.Create {(Timer =>» Instance.Timer,
Subrate => Subrate,
Period_Base _Time => Period_Base_Time,
Period_Offset => Period_Offsetr);

-- _setup/init code goes here.

end Create;

"*"*ti'i'it't"'.ﬁti'i*'t*'i"iiii'i"itt'!it'tlilﬂtlit'i'ii*t"*'**"*t

procedure Update {Instance ¢ in out Objecc;
Delta_Time : in Seu,Seconds;
Input_One : in Seu.fFeet;
Input_Two : in Seu.Psi) is
begin

-- Update the timing data.
Services.Update (Timer => Instarce.Timer,
Delta _Time => Delta_Time):

-- Update the rest of the data if it is time.

if Services.Time_To_Update (Timer =»> Instance.Timer} then
-- Use Zervices.Actual_Delta_Time (Timer =» Instance.Timer)
-- to get the change in time.

"
i

G

e

!

null; --update code goes here.
end if;

end Update;

end <name>_Class;

7.3 Partition Template

The following template shows the basic form of a partition
definition (message) output package.

with Std_Eng_Units;
package <name>_Interface_Defn is
package SEU renames Std_Eng_Units;
type Message_l is
record
Valuel : SEU.Volts;
Value2 : Integer;
Valuel : SEU.Amps;
end record;
type Ml_Ptrs is access Message_l:
type Message_2 1is
record
Valued4 : SEU.Psi:
Value5 : SEU.Feet;
Valueb6 : Natural;
end record;
type M2_Ptrs is access Message_2;
end <name>_Interface_Pefn;

. The first package shows the partitions interface

--] Abstract : This is a general template form a partition’s interface definition

- package. Note that there can be 1

message per package, multiple

-=1 interface definition packages per partition.

-—{ Warnings : None.

with <name>_Interface_Defn;
package <name>_Partition is
end <name»_Partition;

--| Abstract - This-is a general template form for a partition package.

--| Warnings : None.

with Std_Eng_Units:

with Mailbox, -- SVM Mailbox System
Message, -- SVM Message System
Generic_Model; -~- SVM Thread Exec
with <name>_Class; -~ some class

package BODY <name>_Partition is

-- Fackage Renames %

Mesg_1_Id : Message.One_To_Many.Out_Msgs;

Mesg_1 : <name>_Interface_Defn.Mi_Frrs;
Mesg_2_I4 : Message.Many_To_One.Qut_Msgs:;
Mesqg_2 : <name>_Interface_Defn.M2_Ptrs;

-- Internal Partition Class Instances

My_Instance : <name>_Class.Object;

Delta_Time : Set.Seconds:

Elapsed_Time : Set.Seconds 1= 0.0

Partition_Name : Sering(l..16) := *"<name>_Partition”;
Mailbox_Id : Mailbox.Mailboxes;

Stabilized : Boolean := Palse;

My_Var : Integer;

— = VVVVVVVVVVVVVVVVVVVVVVV VYV VVVVVVVVVVVVVVVVVVV VYV VYV VYV VY VY VY VYV VY

procedure Set_Up;

procedure Create_Data;

procedure Self_Inic;

procedure System_Init;

procedure Run; %
procedure Freeze;

procedure Hold:

procedure Term;

package Thread_Exec is new Generic_Model.Periocdic

(Name => Partition_Name,
Rate => Generic_Model.FP40hz,
Execute_Set _Up_Model => Set_Up,
Execute_Create_Data_Model => Create_Data,
Execute_Self_Init _Model => Self_Init,
Execute_System_Init_Model => System_Init,
Execute_Run_Model => Run,
Execute_Freeze_Model =>» Freeze, --note, RUN may be used.
Execute_Hold_Model => Hold,
Execute_Terminate_Model => Term)}:

procedure Process_Mailbox is separate;

procedure Update_Inputs is separate:

procedure Update_Outputs is separate;

procedure Update_Some_Object is separate:;

procedure UYpdate _Somemore_Objects is separate;

procedure Reéset_Partition is separate;

procedure Register_IO is separate;

procedure Set_Up is separate;

procedure Create_Data is separate;

procedure Self_Init is separate;

procedure System_Init is separate;

procedure Run is separate;

procedure Freeze is separate;

procedure Hold is separate;

procedure Term is separate;

end <name>»_Partition;

OMGINAL PAGE 1S
-6 OF POOR QUALITY

with Safestore_Malilbox:
with Zafestore_Msg_Ids;
with Maii_Msg_Types:
separate (<name>_Partition)
procedure Process_Mailbox is
Num_Msgs : Natural := G;
Safestore_Value : <safestore_data_type>;
function Get_Safestore_Value is new
Safestore_Mailbox.Value(Data_Type => <safestore_data_type>);
begin

-- get all of the mail from mailbox

Num_Msgs := Mailbox.Num_Mail_Msgs (Mailbox_Id => Mailbox_Id) loop
for i in 1 .. Num_Msgs loop :

Mailbox.Get {Mailbox_Id => Mailbox_Id,
Mail_Msg_Type => Msg_Tyre):

-- do case on the type of mail message
case Msg_Type is
when Mail_Msg_Types.Ret_To_Safestore =>
-- after type of message is determined, the message must be split to place the
-- data area into the local pointer.
Mailbox.Split_Safestore_Msg (Safestore_Msg => <safestore_message>,
Mailbox_ID => Mailbox_ID);

(

-- get the data
Safestore_Value := Get_Safestore_Value(Msg => <safestore_message>};
when others =>
null;
end case;

end loop:

-- Send ** NOT NEEDED IN EVERY PARTITION **

<type_of_mail_message_to_send>;

-~ do case on the type of mail message
case Msg_Type is
when Mail_Msg_Types.Ret_To_Safestore =>
-- build the message
Mailbox.Build_Safestore_Msg (Safestore_Msg => <safestore_message_variable>,
Mailbox_ID => Mailbox_ID};
-- now send the mail message
Mailbox.Put (Partition_Prefix => <identifies_receiving_partition>,
Mailbox_Id => Mailbox_Id);
when others =>
null;
end case;
‘_‘wx;' £ w0 T
end Process _Mailbox:

PR L

ORGINAL PAZE 15
OF POOR QUALITY -7

separate i<name>_Partition)
procedure Update_Inputs is

' Num_0Of_Msgs : Natural := §;
begin

-- nermal (one-to-many;

-- get time consistent message
Message.lne_To_Marny.3et (In_Msg_Id => <message_identifiers>};

Message.One_To_Many.Get {In_Msg_Id =-> <message_identifiers,
Msg_Time => <simulation_clock_time>);

-- get the latest message that was sent by the producer
-- Note:
- This operation does not provide time consistent message
-— retrieval. The time deltas between the messages received
~—— will vary depending upon the relative execution order of
- the producer and consumer
Message.One_To_Many.Get_Latest
(In_Msg_Id => <message_identifier>,
Msg_Time => «<requester’'s_current_period_start_times);

-- special (many-to-one)

Num_Of _Msgs :=

Message.Many_To_One.Number_Of _Msgs_To_Get (In_Msg_Id =z> (message_identifiers);

For i in 1..Num_Of_Msgs loop
Message.Many_Tq_One.Get
(In_Msg_Id => <message_identifiers>);
<process_message>;
end loop:

end Update_Inputs;

procedure Update_Outputs is
begin

-- To send messages for other partitions to use:

-- for one-to-many messages
Message.One_To_Many.Put (Out_Msg_Id => <message_identifier>);

-- for many-to-one
Message .Many_To_Cne.Put (Out _Msg_Id => <message_identifier>);

end Update_Qutputs;

separate (<name>_Partition)
procedure Update_Soms_Object is
begin =

null; -- Whatever

end Update_Some_Object:

separate {<name>_Partition)
procedure Update_Somemore_Cbjects is
begin

null; -- More whatever

end Update_Somemore_Obijects;

Al

OMGINAL PAGE IS
OF POOR QUALITY

separate {<name>_Parctition)
procedure Initialize_Model is
kegin

<name>_Class.Request_State_Change(Instance => <name>»_Instance_l,
Command => Reset}:

<name>_Class.Regquest_State_Change(Instance => <name>»_lIlnstance_2,
Command => Reset)};

<name>_Class.Request_scace_change(Instance =>»> <name>_Instance_N,
Command => Reset);

end Initialize_Model:
separate (<name>_Partition)
procedure Register_IO is
pegin

Mailbox.Register_Mailbox ({Partition_Prefix => <identifier_of_registering_partition>

Mailbox_Id => <identifies_the_mailbox>);

-- Identify the messages to be sent to other partitions
-— {output messages from this partitions perspective)
-- Each output message will require a REGISTER_TO_SEND_MSG routine

-— normal {one-to-many)

Message.One_To_Many.Register_To_Send_Msg

{Out_Msg_Id => <identifies_the_message>,
Partition_Prefix => <identifier_of_registering_partition>,
Msg_Dis_Id => <DIS_id_of_message_to_be_sent>,
Msg_Bit _Size -> <message_size_in_BITS>,

Execution_Rate => <worst_case_delivery_rate>,
Msg_Ptr_Addr => <local_pointer_to_the_message>) :

-- special (many-to-one)

Message.Many_To_One.Register_To_Send Msg

{Out_Msg_Id => <identifies_the_message>,
Partition_Prefix -> <identifier_of_the_requesting_partition>,
Msg_Dis_Id => <DIS_id_of_message_to_be_sent>,
Msg_Ptr_Addr => <local_pointer_to_the_message>)

-— Identify the messages to be received from other partitions
- (input messages from cthis partitions perspective)
—- Each input message will require a REQUEST_TO_RECV_MSG

-- normal (one-to-many)

Message.One_To_Many.Register_To_Recv_Msg

{In_Msg_Id => <identifies_the_message>,

Partition_Prefix -> <identifier_of_the_requesting partition>,
Msg_Dis_Id => <DIS_id_of_message_to_be_received>,
Execution_Rate -» <rate at which receiving partition executes>,
Msg_Ptr_Addr => <loca1_pointer_to_the_message>);

-- special {(many-to-one)

Message.Many_To_One.Regester_To_Recv_Msg
(In_Msg_Id =» <identifies_the_message>,
Partition_Prefix -> <identifier_of_the_requesting_partition>,

Msg_Dis_Id => <DI3_Iid_of_message_zo_te_sents,
Msg_EBit _Size => <message_size_in_BITS>,
Queue_Size => <Worst_case_gzueue_slzaes,
Msg_Pﬂr_Addr => <local_pointer_to_the_messages> ! ;

with DIS, <name>_Defs;
separate [<name>_Partition)
procedure Ser_Up is

begin

DIS.Connect_Term (Term => <name>_Defs.<variable_name>, -- Term ID

Address => <variable_name>'address); -- Variable’s Address
DIS.Connectc_Term (Term => <name>_Defs.<variable_name>, -- Term ID

Symbol => "<variable_name>~); ~- Variable’'s Name

-- Initialize the model(s) in this Partition.

Register_IO;

end Set_Up;
separate (<name>_Partition)

procedure Create_Data is

begin

-- normal {one-to-many)

~- for each one-to-many input message CREATE_MSG is required
Message.One_To_Many.Create_Msg (In_Msg_Id => <identifies_the_messages>);

-- for each one-to-many output message CREATE_MSG is required
Message.One_To_Many.Create_Msg (Out_Msg_Id =»> <identifies_the_message>);

-- For each one-to-many output message, init the buffer with *good” dacta.
in case another partition were to try and "read” from this
ngures no constraint errors because of no initialization.

‘3‘;:_‘&(
Message .One Tb_Many.Put (Out Msg_Id => <identifies_the_message>);

-- special (many-to-one)

-~ for each many-to-one input message CREATE_MSG is required
Message.Many_To_One.Create_Msg {In_Msg_Id => <identifies_the_message>);

-- for each many-to-one output message CREATE_MSG is required
Message.Many_To_Cne.Create_Msg (Out_Msg_Id => <identifies_the_message>):

end Create_Data:

separate {<namex>_Partition)
procedure Self_Init is

ORIGINAL PAGE 1S
OF POOR QUALITY

q

ig rautine will te za..ed atfter scme Iyte 34 1:-:;“11’3:;3r daca has teen
- rea? “rom an initializacion file and glaced Iin L tre appropriaze mailbox.
n arameter, Initialization_Tyre 1s used o ilden ify trhe type of seif-inic
Te ﬁ;es-ed i.e., a full IC or a state adjustment. See section 4.2.2 >

-- Tcre .nformatlon.

f Tmread Txec.A_Fuil_Ic_Is_Required then -- means we are Joirg 2 full_ic ini
-- see gection 4.4.2

-~ Each parcition will read the mailkox data and populate local variables to
—- cheir new values. It will also perform any other necessary internal

-~ initialization. ’ -

._ NOTE: This is a one-pass initialization -- no iterating!

Process_Mailbox;
—- Setup flags used during System_Init

Stabilized := False:
Elapsed_Time := 0.0:;

I —— This is to be called when the partition has completed self-init processing
Thread_Exec .Ready_To_Transition:

end Self_Inic;

separate {<name>_Partition)
procedure System_Init is
begin

-- This routine will be called after Self_Init is complete.
__ Partitions wiill be able to iterate in this mode until stable condicions
-- have been reached. '

Delta_Time := Thread_Exec.Delta_Time;

Process_Mailbox:;
Update_Inpucts;
Update_Some_Object:
Update_Somemore_Cbjects;
Update_Outputs;

-- Update the timer used to stabilize this model
if not Stabllized then
Elapcﬂ_‘l‘iﬁ :x Elapsed_Time + Delta Time;
if Elag |_Time >= 5.0 then
Scabilized :z= True:
Thread_Exec .Ready_To_Transition;
end if;
end if;

end System_Inict;

separate (<name>_Partition)
procedure RUN is

begin

-- ANY PROCESSING REQUIRED BY THIS PARTITION WILL BE PLACED IN HERE SOMEWHERE

Delta_Time := Thread_Exec.Delta_Time:

Al i

QRIGINAL PASE IS’ , 111
OF POCR QUALITY

Froocess_Mailbox:

Tpdaze _Inputs;
Trdaze_Zome_Cbiez::
Urdaze_fomemore Thiects;
Trdazte_Tutputs;

-- ANY PRCCESSING REQUIRED BY THIS PARTITION WILL BE PLACED IN HERE SOMEWHERE
-- Parcticions will still iterate, however integration constants wi' Doe set
-- to zers. OQOverruns will be detected in this mode. Messages car passed
-- and malfunctions entered by ICS.

Delca_Time := Thread_Exec.Delta -~ rme;

Process_Mailbox;
Update_Inputs;
Updace_Some_Cbject;
Update_Somemore_Chkjects;
Update_Cutpucs;

end FREEZE; =

i

separate (<name>_Partitcion)
procedure HCLD is
begin

-- ANY PROCESSING REQUIRED BY THIS PARTITICN WILL BE PLACED IN HERE.
-- GENERALLY, ONLY PARTITIONS NEEDING TC PERFORM:

- 1. I/0 TO KEEP DEVICES FROM DROPPING OFF-LINE

-- 2. SPECIAL PRCCESSING FCR ASSET ADD/DROP (INTERFACE AGENTS)

-~ NEED TO PRCVIDE SPECIAL ROUTINES FOR THIS MODE.

-- NC MESSAGES WILL BE PASSED IN THIS MODE
~- NO MALFUNCTIONS ENTERED FROM IOS.

separate («<name>_Partition)
procedure TERM is
begin

-- ANY SHUTDOWN PROCESSING REQUIRED BY THIS PARTITION WILL BE PLACED IN HERE

null;

end TERM:;
7.4Generic Partition Template

The following template shows the differences between a normal partition and a generic partition. This struc-
ture basically makes a class—ike structure out of an RMS—scheduled partitic -

with DIS;
generic

Parcition_DIS_Id : in DIS.variable_id;
package <name>_Partition:

1-12

¢

(

8. APPENDIX Il —-REAL TIME INTERFACE PACKAGES

8.1. Generic Model

__ this ca=zxage provides generic packages instantiated by applicacions
-— for schedu:.ng.

wich 3cd_Eng_Units:
with Rts_Types:
with 3Simulation_Clock:

-- periodic rates supported are 40, 30, 25, 20, 10, 5, 2, and 1 Hz
type Periodic_Rate is new Rt.Execution_Rate range Rt.P40hz .. Rc.Plhz;

generic
Name : in String:
Rate : in Periodic_Type;
with procedure Execute_Set_Up_Model;
with procedure Execute_Create_Data_Model;
with procedure Execute_Self_Init_Model;
with procedure Execute_System_Init_Model;
with procedure Execute_Run_Model;
with procedure Execute_Freeze_Model;
with procedure Execute_Hold Model;
with procedure Execute_Terminace_Model;
Storage_Bits : in Inceger := 10240 * 8;
Max_Dis_Terms : in Integer := 400

package Periodic is
-- subprograms for Thread Exec characteristics
funcrion Delta_Time return Seu.Seconds;
function Rate_Of _Execution return Rc .Execution_Rate;
-- subprograms for partition moding
function A_Full_Ic_Is_Required return Boolean:
procedure Ready_To_Transition (Continue_Exec : in Boolean := False);
package Clock renames Simulation_Clock:
use Clock:
function G_M_T return Clock.Time:;
function S_G_M_T return Clock.Time:

end Periodic:

w—r g o e e e o o e 2 e e e S

-- aperiocdic budgeted rates are 40, 130, 25, 20, 10, 5, 2, and 1 Hz
typs Aperiodic_Rate is new Rt .Execution_Rate range Rt.Ad40hz .. Rt.Alhz:

generic
Name : in String:
Rate : in Aperiodic_Type:
Iterations : in Integer:
Vector : in Integer;
with procedure Execute_Set_Up_Model;
with procedure Execute_Create_Data_Model:;
with procedure Execute_Self Init_Model;
with procedure Execute_System_Init_Model:
with procedure Execute_Run_Model;
with procedure Execute_Freeze_Model;

=1

Al

UL [}

gackage Agerizdicz is

-- subprogram far Thread Ixec ctravacteristizs

runction Rate_Cf_Execurion return Ri.Execution_Ra-e:;
ime functions recurn latest time from SimClzc

Zlack:

_T recurn

tkage Jlock renames Simulacisn_Clock;

recurn Clock.Time;
Clock.Time;

-~ asynchronous partitions execute in rackground

generic

package

Name

with
witch
with
wich
with
with
with
wich

: in String:
Pelay_Time : Seu.Seconds:

procedure
procedure
procedure
procedure
prccedure
procedure
procedure
procedure

Storage_Bits
Asynchronous is

-- subprograms for Thread Exec characteristics
function Rate_Of_Execution return Rt.Exe
procedure Ready_To_Transition {Continue_Exec : in Boclean := False);

Execute_Set_Up_Model;

Execute_Create_Data_Model;

Execute_Self_ Init_Model;

Execute_System_Initc_Model;

Execute Run_Model;

Execute_Freeze_Model:;

Execute_Hold_Model;

Execute_Terminate_Model; 7
in Inceger :=z 10240 + 8;

ion_Rate;

procedure Change _Delay Time (Time : in Seu.Seconds);
end Asynchroncus;

end Generic_Model;

L =4

ORIGINAL PAGE IS

-2 OF POOR QUALITY

8.2.

willh

Dis, Ros_Types, 3td_gEng_Unizs, Simuiarisn_Clsck,
Message_Internal_Types, 3Syscem;

caczxage Message (S

———————————————————————————— Exceptions ~----=--—-------o-—--=--—————
_- 7Tre following exception is raise if an error occurs while

-- secring up t“he Tessaging system. If this exception is raised

-- rre messaglng system may not function properly.
Message_System_Secup_Error : exception:

- The following exception is raised if there is an unrecoverable
—-- error in the messaging system. If this error is raised the

-- message system may not function properly.
Message_Internal Error : exception;

—— The following exceptions are raised if the message can not be
~-- successfull registerd or created.

Register_Message_Error : exception;

Create_Message_Error : exception;

-- Package One_To_Many should be used for all general communication needs.
-- It supports one sender sending tc one or more receivers. It provides
-- time homogeneous and time consistent data based on the relative rates
-- of the sender and receiver(s) if the Get operation is used to retrieve
-- messages. If the Get_Latest operation is used it provides the latest
-— (most recent) message that was sent by the producer.

sy TN

package One_To_Many is -— Normal Communication

type Out_Msg is limited private;
type In_Msg is limited privace;

———————————————————————————— Exceptiong ---—---—-----—-----—----—-----
-- The following exception is raised by the Get operation if the

-— time consistant message that is to be received by the caller

- (based upon its execution rate) is nolonger in che message

—- buffer. This condition will arise if the caller is executing

-- slower than the lowest supported rate, or if it has has an

-- overrun which causes it to be executing slower than the lowest

-- supported rate. -

Message_Not _Found : exception;

called by the producer --—-——-————=====-=

— This operation must be called by the producer during the
- Register_I/0 submode for each message chat is to be sent,
procedure Regiscer_To_Send Msg
’ (Out_Msg_Id : in out Out _Msg:
Partition_Prefix : in Dis.Component_Id;
Msg_Dis_Id : in Dis.Message_Id:
Msg_Bit_Size : in Natural;
Execution_Rate : in Rts_Types.Execution_Rate;
Msg_Ptr_Addr : in System.Address);

-- This operation must be called by the producer during the
-- Create_Data submode for each message that is to be sent.
procedure Create_Msg (Out_Msg_Id : in out Qut _Msg};

-- The Put operation is called by the producer to send a message
procedure Put (Out _Msg_Id : in out Out _Msg):

ORQINAL PAGE 1S 1-3
OF POCR QUALITY

------------- called by the recelver!s:

-- This operation must ke called by the receiver
-~ Register_I/C submode for eazh message that is

procedure Register_To_Recv_Msg

-- This operation must be called by the receiver during the
-_ Create Daca submode for each message that is to be received.
procedure Creace_Msg (In_Msg_Id

{In_Msg_Id : in out In_Msg;

Particion_Prefix : in Dis.Component _Id;
Msg_Dis_Id : in Dis.Message_Id;
Execucion_Rate : in Rts_Types.Execution_Rate;
Msg_Ptr_Addr : in System.Address!

to ke received.

in out In_Msg):

_- The Get operations retrieve time consistent messages relative to

-- -ne rate of the consumer.

-- pe

riod.

procedure Get (In_Msg_Id : in out In_Msg);

procedure Get (In_Msg_Id : in out In_Msg:

—- The Get_lLatest operations retrieve the most recent message
-- produced (relative to the rate of the producer).

procedure Get_latest (In_Msg_Id : in out In_Msg);

procedure Get_Latest (In_Msg_Id

NOTE:

These operations do not provide rtime consistent message
The time deltas between the messages received
will vary depending upon the relative execution order of

retrieval.

Msg_Time : out Simulation_Clock.Time);

che producer and consumer.

e e b

-- -- private

private

package Mit renames Message_Internal Types:

pragma Inline (Put);
pragma Inline (Get):
pragma Inline (Get_Latest):

Buffer_Ptr : Mit.Msg Buffer Prr:
Desc_Ptr : Mit.Otm_Msg _Desc_Ptr;
Tag_Ptr : Mic.Otm Msg_Tag_Pcr:
partition_pPtr_Addr : System.Address:
Routing_Table_Index : Integer := 0:
Period : Rts_Types.Execution_Rate :=
Rca_Types.Execution_Rate'Pirst:

end record;

type I[n_Msg is new Msg:
cype Out_Msg is new Msg;

end One_To_Many:

-4

The message retrieved will be the
-- most recent message produced during the consumers previous

in out In_Msg:
Msg_Time : out Simulacion_Clock.Time};

il

e

ORQINAL PAGE IS
OF POCR QUALITY

&

Mo,

__ Pazcage Many_To_Olrie should re used srily for special zase fommunizaticon.
-- All messages sent to the receiver are queued in rIrC order. The message
-- received is not based on The rates oI the sender and recelver, instead

.. =re receiver receives ai. message sent. This communication method

-_ srou.d be used when a single recelver recelves the same Tessage from

__ mcre -han one preducer or when i single receiver needs o recelve all

_- ressages sent in FIFC crder. When the receiver registers to reeceive

- a message a Jueue size must be specified. The gueue size should be

-~ decermined tased upon two factors. First, the number of possible senders
_- and second, tne relative execution rates of the senders and che recelver.
-— If the receiver is executing faster than or at the same rate as the

-~ senders, cthe gqueue Size must be at least as large as two times the number
—_ of senders. If the receiver is executing slower than the senders the

-— following formula can be used to calculate the queue size:

- [(senders rate / receivers rate] x 2] x #senders.

-~ For example, if the receiver is executing at 10Hz wicth three senders

-- executing at 40 Hz the queue size should be [(40/10) x 2] x 3 = 24.

package Many_To_Qne is -- Special Case Communication
package Mit renames Message_Internal_Types:

type Out_Msg is limited private;
type In_Msg is limited private;

_— 512 has been chosen as the max queue size, no particular reason, just
-- a guess for now.
subtype Queue_Sizes is Mit.Internal_Queue_Sizes range 0 .. 512;

e i

---------------------------- Exceptiong -=--—=-——---------se=————----=
-— The following exception is raised by Put when the queue is full
Queue_Full : exception;

-- The following exception is raised by Get when there are no messages
No_Messages : exception:

----------------- called by producers of message ittt Dbttty

—- This operation must be called by the producers during the

-- Register_I/0 submode for each message that is to be sent.

procedure Register_To_Send_Msg (Out_Msg_Id : in out Out_Msg;
Partition_Prefix : in Dis.Component_Id;
Msg Dis_Id : in Dis.Message_Id;
Msg_Ptr_Addr : in System.Address):

-- This operation must be called by the producers during the

-- Create_pData submode for each message that is to be sent.
procedure Create_Msg {Out_Msg_Id : in out Out_Msg);

— This operation will return true if the queue for Out_Msg_Id
- is full h
function Queue_Is_Full {Out_Msg_Id : in Ouc_Msg) return Boolean;

-~ The Put operation is called by the producers to send a message
procedure Put {Out_Msg_Id : in out Qur_Msg) ;

----------------- called by receiver of message ---—---—-—--==------

—- This operation must be called by the receiver during the

-- Register_I/O submode for each message that is to be received.
-- See the description at the begining of the Many_ To_One package
-- to determine the queue size. .

procedure Register_To_Recv_Msg {In_Msg_Id : in out In_Msg:

QAIINAL PAGE IS5

OFf FOOR QUALITY -8

Parcition_Prefix : in Jis.lomponent
Msg_Dis_Id : in Cis.Message_I7Z;
Msg_Bi:_Size.: in Naturai:;
Gueue_3ize : in Zueue_Sizes:

Msg_Prr_Addr : in System.Address;;

_. mniz 3reratisn -ust be called by the receiver during cthe
—-— Zreaze_Tazia Su ie for each Tessage that 15 Lo be received.

rrocedure Create_’ . {In_Msg_Id : in cut In_Msg);
-- This operation may be callied by the receiver to determine the

-- number of partitions registered to send a particular message.
funcrion Number_Of _Senders {(In_Msg_Id : In_Msg) return Nacural;

-- This operation may be called by the receiver to determine the
-- the number of messages available to get.
function Number _Of _Msgs_To_Get (In_Msg_Id : In_Msg] return Narural;

-— The Get operations will retrieve the next message in che FIFO queue.
procedure Get (In_Msg_Id : in out In_Msqg):;

procedure Get {(In_Msg_Id : in out In Msg;

Msg_Time : out Simulacion_Clock.Time):

-- -- private

privace

end Hnnﬁ:ia_pn-:

pragma Inline (Get];
pragma Inline (Put};
pragma Inline (Number_Of Msgs_To_Get);

-- Reccrd for SGI
type Msg is
record
Buffer_Ptr : Mit.Msg_Buffer_ Ptr:
Desc_Ptr : Mit.Mto_Msg Desc_Ptr:
Tag_Ptr : Mit.Mto_Msg_Tag_Prr;
Partition_Ptr_Addr : System.Address;
Routing_Table_Index : Integer := 0;
Queue_Size : Mit.Internal_Queue Sizes := 0;
and record;

type In_Msg is new Msg:
type Out_Msg is new Msg:

Package Remote is not to be used for general purpose communication

or for parti:.o>n to partition communication. It is intended to be used
used by RTS, . .terface Agents, and in other special cases (IOS, OSS)
for communication across the lan.

All messages sent to the receiver are queued in FIFO order. Each
receiver effectivly has its own queue.

when the receiver regiscers to receive o

a message a gueue size must be specified. The queue size should be-
determined based upon two factors. First, the number of possible senders
and second, the relative execution rates of the senders and the receiver.
1f the receiver is executing faster than or at the same rate as cthe

1i-8

-

o

¢

(

lers, che Jueue sSlLze TWust be at least as larze 2s Two T.TMes Ine nurrer
I C

eiver is executing slower than the sernders the
L-wing formula zan te used TP sa.sulate the jueue size:
I 'senders rate / receivers race, X 2] x #senders.

sxample, if the receiver is exe-ucting at 1JHz with three sernders

s2zing at 40 Hz the gueue size srould pbe [142/.0) x 2! x 3 = 24.

1

cecial Case Zommunication

u
:
a
(]
(]

'

1
31

cazxage MiT renames Message_Internal _Types:

type Cut_Msg is limiced privace;
rype In_Msg is limited private;

-— 512 has kteen chosen as the max gqueue size, no particular reason,
-- a guess for now.
subtype Cueue_Sizes is Mit.Internal Queue_Sizes range 0 .. S12;

---------------------------- Exceptions -—-—--—=-----—=-sss—-o—-—oos-=-

—— The following exception is raised by Put when the queue is full
Queue_Full : exception;

—— The following exception is raised by Get when there are no messages

No_Messages : exception:

----------------- called by producers of message T —emmmm——m e

-- This operation must be called by the producers during the
-- Register_I/0 submode for each message that is to be sent.
procedure Register_To_Send _Msg

(Out _Msg_Id : in out Out_Msg;

Partition_Prefix : in Dis.Component_Id:;

Msg _Dis_Id : in Dis.Message_Id:;

Msg_Bit_Size : in Natural;

Queue_Size : in Queue_Sizes;

Execution_Rate : in Rts_Types.Execution_Rate;

Msg_Ptr_Addr : in System.Address) ;

-- These operations are called to unregister messages. They

-- provide cthe capabilicy for multiple senders and receivers

-- to register to send or receive a message without knowing

—- who the true sender or recieve will be. Once :he true sender

-— or receiver is determined, the others unreglscer chere messages.

—- NOTE: These operations must be called before the Join_Session
-- operation is called!!! They are not to be used after 1n:er -asset
-— communcation has been established.

== Unregister an out message. (Un-Register_To_Send_Msg)
procedure Unregister_Msg (Meg_Id : in out Out_Msg);

-- Unregister an in message. {Un-Register_To_Recv_Msg)
procedure Unregister_Msg (Msg_Id : in out In_Msg);

-~ These two operations provide the capability for a sender
-~ or receiver to re-register to send or receive a message
__ after un-registering it with one of the above Unregister
-- operations.

—- NOTE: These operations will not allow the sender or
__ reciever to send or receive messages across the LAN.
-— It will only let them start sending or receiving the
-- message locally. It is incended to be used by an asset

- -7

-- af-er it has ceen drapped and 1s sctandal:ne and “rereizre
- dces not wish to send >r recel.ve T€sSsSaje ATTISS LhE Lan
_- put dces need o send or recelve Them now lhat LT LS
»
-- standalcne.
-- Reregister an out message. {Re-Register To _3end_Msg:
grocedure Reregister_Msg Msg_Id : in oul Jut _Ms3i:
_. Reregister an in message. (Re-Register_To_Recv_Msg.

procedure Reregister_ Msg {Msg_Id : in out In_Msg):

-- This operation must be called by the producers during the
__ Zreate_Data submode for each message ~hat is to be sent.
procedure Create_Msg (Out _Msg_Id : in out Jut_Msg):

-- This operation will return true if the queue for Out_Msg_Id
-~ is full
function Queue_Is_Full (Ouc_Msg_Id : in Out_Msg) recurn Boclean;:

- The Put operation is called by the producers to send a message
procedure Put {Out_Msg_Id : in out Cut_Msg):

----------------- called by receiver of message —ememm———————

—-~ This operation must be called by the receiver during the

-- Register_I/0 submede for each message that is to be received.

-- See the description at the begining of the Many_To_One package

-- to determine the queue size.

procedure Register_To_Recv_Msg {In_Msg_Id : in out In_Msg;
Partition_Prefix : in Dis.Component_Id;
Msg_Dis_Id : in Dis.Message_Id:
Msg_Bit_Size : in Nacural;
Queue_Size : in Queue_Sizes:
Msg_Ptr_Addr : in System.Address};

-— This operation must be called by zhe recejver during the
-— Create_Data submode for each mess -~= that ig ts be received.
procedure Creacte_Msg (In_Msg_Id : - .t In_Msg):

-- This operation may be called by <=e receiver to determine the
-- the number of messages available to get.
function Number_Of _Msgs_To_Get (In_Msg_Id : In_Msg) return Natural;

—- The Get operations will retrieve the next message in the FIFO queue.
procedure Get {In_Msg_Id : in out In_Msg);

procedure Get (In_Msg_Id : in out In_Msg;
-) Msg_Time : out Simulation_Clock.Time):

-~ —— privace

privace

pragma Inline (Get};
pragma Inline (Put};
pragma Inline (Number Of _Msgs_To_Get):

-- Record for SGI
type Msg is
tecord

Buffer_Ptr : Mit.Msg_Buffer_Ptr; O‘R‘GSNAL PAGE IS

i
I8 OF POOR QUALITY

¢

Cueue_3ize ce = J;
My_Ready_Remove_Index : Posizive 1= 13
nd record:;

tyre In_Msg .s new Msg:
tyTe Sui_Msg is new Msg;

anrnd Remotre;

-— This package contains controlling operations only to be used by rts.
-- The router needs special inté:faces because it cannot create a Msg_Id
-- for each message that it puts and gets from the software backplane.
—— It is just a pass thru from the RTSN to the software backplane and

-- visa versa.

package Control is

-~ The scatus values for Join_Session and Drop_From_Session
type Config_Status is (Success, Pending, Error}:

———————————————————————————— Exceptions -——--—————--=-ses--=-o-—=---=-—
—- The following exception is raised by Puc when che queue is full
Queue_Full : exception; -- raised by Put when the queue is full

—— The following exception is raised by Get when there are no messages
No_Messages : exception; -- raised by Get when there are no messages

—— This procedure is to be used by cthe router to create a
-- reflected message.
procedure Create Msg (Msg_Dis_Id : in Dis.Message_Id);

-~ This operation will return true if the queue for Msg_Dis_Id
-- is full
funccion Queue_Is_Full (Msg_Dis_I4 : in Dis.Message_Id) recurn Boolean;

—-- This procedure is called by the Router to put a remote message
-- into the swbp after receiveing if from the lan.
procedure Put (Msg Dis_Id : in Dis.Message_Id;

Msg_Addr : in System.Address) ;

—— This procedure is to be used by the router to decermine
_- the number of remote messages in a message queue TO be

-- gent out over the lan.

function Number _Of Msgs_To_Get

- {Mag_Dis_Id : Dis.Message_Id) return Natural;

ﬁg; ?bil procedure is called by the Router to get a remote message
“—— from the swbp to send it out over the lan.
procedure Get (Msg Dis_Id : in Dis.Message_Id;

Msg_Addr : in System.Address) ;

-- This command instructs the software backplane to set up

.- communication with a session. It should be called after

—— the Setup and Create Data submodes to establish inter-asset
-- communication.

procedure Join_Session ({Session : in Std_Ehg_Unics.Sessions);

-- This command instructs the software backplane to drop
—- communication with the session.
procedure Drop_From_Session:

o n-e
ORXGANAL PACE S

OF POOR QUALITY

~-- This ospera:z rn. the sctatus 7 che last Join_3essicn
-- or Drop_Fro .
function Sctacy Stazus;

.- This operacion will determine il trhe message zan be a retlected
-~ message. It will :heck the size »f che Tmessage agianst the
_. the amount of refleccted memery left. It wiil alsoc check the
-- tyre of the message. Jurrently only CTrne-TU-Many Tessages tan
- te reileczz2rd.
n-is _Message_ran_Be_Reflected
{Msg_Dis_Id : in Dis.Message_Id] recturn Boolean;

—- This operation is cailed by the Router to prepare a remote message
—— to be sent remote. It should be called for a specific remote

-- message when the first asset that receives the remote message

-- joins the session.

procedure Setup_To_Send_Msg_Remote (Msg_Dis_Id : in Dis.Message_Id}:

-~ This operation is called by the Router when a remote message

-- that is being sent remote no longer needs to be send remote.

-- It should be called for a specific remote message when the

.- last asset that requires the message drops from the session.
procedure Stop_Sending_Msg_Remote {Msg_Dis_Id : in Dis.Message_Id);

-- This command shutsdown the software backplane
procedure Shutdown;

W

privace

pragma Inline {Get};

pragma Inline {Put):

pragma Inline {Number_Of _Msgs_To_Get):

pragma Inline (Stacus):

pragma Inline {This_Message_Can_Be_Reflected}:

(m

end Concrol;

-— This package contains the communicacion interface for black boxes on
-— the RTSN. It will provide operations to register, create, send, and
_- possibly receive messages. These operations are different than those
-- in One-To-Many and Many-To-One because there may be special formats
-- required in order to communicate with a black box.

package Black_Box is

package Mit renames Message_Internal Types:

type Command_Statuses is (Success, Pending, Bad_Id, Busy, Error};
type Command Ids is privace;
gjpgjln:oriace_States is (Enabled, Disabled);

—- %12 has been chosen as the max queue size, no particular reason, just
-- & guess for now.)
subtype Queue_Sizes is Mit.Internal_Queue_Sizes range 0 .. S512;

type Comm_Types is (Stream, Dgram) ;
type Networks is {(Rtsn, Gp):

type Out_Msg is .imited privace;
type In_Msg is limited privace;

----------------- called by the producer emmmm e

!
i i

(

-- This operation must be called by the producer during the
-- Register_I/0 submode for each message that is to be senc.

ORIGINAL PAGE IS
Y OF FOOR QUALITY

Q-2.

I: will register the message with the software fackp.ane
-— and esctablish the communization link with the black box.
grocedure Regis:e:_To_SendrMsg

{Cut _Msg_Id : in out Out _Msg;
parcicion_Prefix : in Zis.lomponent_Id;
Msg_Dis_Id : in Dis.Message_Id;

Msg_3it_Size : in Natural;

Execution_Rate : in Rus_Types.Execution_Rate;

Msg_Ptr_Addr : in System.Address;

Receiving_Node : in Std_Eng_Units.Nodes;

Comm_Type : in Comm_Types: -
Network : in Networks := Rtsn}:

_— This operation must be called by the producer during the
-- Create_Data submode for each message that is to be senc.
—— It will allocate the buffers in the software backplane for
-- the message.

procedure Create_Msg (Out _Msg_Id : in out OQut_Msg):

- The Put operation is called by the producer to send a message
procedure Put (Out_Msg_Id : in out Out_Msg):

----------------- called by receiver of message B et EE Lt Dttt

-- This operation must be called by che receiver during the

-~ Register_I/0 submode for each message that is to be received.

procedure Register To_Recv_Msg {In_Msg_Id : in out In_Msg; ;
partition_Prefix : in Dis.Componenc_Ia:
Msg_Dis_Id : in Dis.Message_Id; -
Msg_Bit_Size : in Natural; ‘
Queue_Size : in Queue_Sizes;
Msg_Ptr_Addr : in System.Address;
Sending_Node : in Std_Eng_Units.Nodes:
Comm_Type : in Comm_Types:
Network : in Networks := Rtsn};

3N

™

-- This operation must be called by the receiver during the
—- Create_Data submode for each message that is to be received.
procedure Create_Msg (In_Msg_Id : in out In_Msgq):;

—- This operation may be called by the receiver to determine the
-- the number of messages available to get.
function Number_Of_Msgs_To_Get (In_Msg_Id : In_Msg) return Natural;

-- The et operations will retrieve the next message in cthe FIFO queue.
procedure Get (In_Msg_Id : in out In_Msg);

-— called by eithor -—=====--= e m————m——

+ These commands can be called to command the software backplane to
ﬁi}foru certian operations associated with communication with a
~~ Bblack box. The commands recurn command id which unigely identify
-— the command. Status of the command can be obtained by calling

-- the satatus function and passing it the id of cthe command on

__ which status is desired. The status will be one of the following:
- Success - the command has completed successfully

-— Pending - the command is in progress

- Bad_Id - no command associated with this id

-~ Busy - a command is already in progress to this node

- Error - the command has not completed successuflly

-- Only one command can be outstanding to a node at a time. If

-- multiple commands are issued all but the first will be ignored

_- and status calls will return with busy. These commands must

-- be re-issued after the previous commands complece.

OMGINAL PAGE IS =11
OF POCR QUALITY

sommunicacion link wizh

- 7Thnis TaTmand will open and Configu
.- trme Dlacxk zox. It should not ce T
-- o Ismnwnizacte.

finetion Zpen_Comm ,Nede : in Scd_Ing_Lnils. Ncdes, returr Zommand_Ids;

antil “he back bBox s ready

~smmand wil. :zlose the communication iink with the
rox.

<
funccion Close_comm (Node : in Std_Eng_Units. Nodes, return Command_lds;

{1

—— This sreraticn will return the status >f the command associared
-- wizhn the zommand id.
funccion Jommand_3tatus {Command_Id : in Command_Ids;

recurn Command_3Stacuses:

__ These zommands return che state of the black box node interface
function Interface_State

(Node : in Std_Eng_Units.Nodes) return Interface_States;

function Interface_Is_Disabled
(Node : in Std_Eng_Units.Nodes) return Boolean:

function Interface_Is_Enabled
(Node : in Std_Eng_Units.Nodes) return Boolean:

privace

pragma Inline (Get);

pragma Inline (Puc):

pragma Inline (Number_Of_Msgs_To_Get);
pragma Inline (Cpen_Comm):

pragma Inline {Close_Comm):

pragma Inline (Command_Stacus);

pragma Inline (Interface_State):
pragma Inline {Interface_Is_Disabled):
pragma Inline (Incerface_ Is_Enabled);

type Command_Ids is new Natural:

type Msg is
record

Buffer_Ptr : Mit.Msg _Buffer_ Ptr;
Desc_Ptr : Mit.Mto_Msg_Desc_Ptr;
Tag_Ptr : Mit . Mto_Msg _Tag_Ptr;
Parcition_Ptr_Addr : System.Address;
Routing_Table_Index : Integer := 0;
Period : Rts_Types.Execution_Rate :=

L Rts_Types.Execution_Rate’Pirst;

nd record;

tYpe In_Msg is new Msg:
type Out_Msg is new Msg:

end Black_Box:

end Message:

Abstracc: This package provides the types and operations necessary to
interface with the messaging system.

warnings: This package depends on the use of shared memory and shared
semaphores. The semaphores are only used during initcializacion,
not during runtime.

ORIGINAL PACGE 1S

li-12 OF POCR QUALITY

(

(

This racxaje iepends upont

ssmpatLoility cetween Jysten.AdiIress
ess tyre. 1t uses Z
s

and cthe value ~f an ac nokecked_Tonversion
te conver: from X'Address To an

access Iyre.

I-13 QRIBNAL PACE 1§
OF POCR QUALITY

vt a8 |

8.3. Mailbox

wizh Message_Tnternal _Types, Zis,
Jalestore_Mailbox, Malfuncction _Malliox, Meja_Mailbex, 3td_Zng_Tyges:

Enzer_Mailkccx, ,

pcazkage Mi:t renames Message_Internal _Tyges:
rackage Jer renames 3cd_Eng_Tvyres:

---------------------------- JONSTANTS ~—~————mmmmmm o

-- The size of a mail message
-- 2k storage units long - just a guess for now
Max_Mailbox_Msg_Size : constant Natural := 2048§;

---------------------------- IXCePLIoNS - -—mm e e o

-- Not used
Not _A_Prefix : exception;

-- Raised by Register_Mailbox if an exception occurs. Or if the
-~ Component_Id supplied for the paramecer ‘My_Partition_Prefix*
-- 1s not a partition prefix. That is, the Component_Id was not
-- registered (Dis.Register_Component) with Prefix set to True.
-~ When ever possible a message will be logged giving details as
-- To why this exception was raised.

Register_Mailbox_Error : exception;

-- Raised by Get_User_Defined Msg_Type, Get_User_Defined_Msg, and
-- Get_Next _Msg _Type if they are called on an empty mailbox
Mailbox_Empty : exception;

-- Raised by Put_User Defined Msg if the desination mailbox is not
-- found . .ot registered).
Mailbox_Not_Found : exception;

-- Raised by Put_User_Defined Msg if a user defined mail message
-- is too large.
Mailbox_Message_Too_lLarge : exception;

-~ Raised by Put_User_Defined Msg if the mailbox does not have enough
-~ memory to send the message.
Mailbox_System_Out _Of_Memory : exception;

~-- Raised if the mailbox system cannot startup correctly. If this is
-- raised the mailbox system may not function correctly.
Mailbox_gtarctup Brror : exception:;

e .
-- RailquLghth. mailbox syscem cannot shutdown correctly.
Mailbox_Shutdown_Error : exception;

-- Raised by Register_ Mailbox if there is an uncrcoverable internal
-- eérror in the mailbox system. If chis error is raised, the mailbox
-- system should be considerd erronous.

Mailbox_Internal _Error : exception;

-------------------- Types e —————————————

type Msg_Types is (Router, Return_To_Safestore, Recurn_Toc_Datastore,
Malfunction, Enter, Mega, User_Defined):;

for Msg_Types use {(Router => -7, .
Return_To_Safestore => -6,

1-14

¢

¢

"

ar

(

Rerurn_To_Cacastore => -5,
Malfunczion => -4,
Enzer, => -3,

>
Lser_Cefined => -1);

tyge Internal_Msg_Type l1s limized private;
zyre Mailboxes is limited private:

———————————————————— called by owner of mailbox B e e E L LD Lt

-- This operation registers a mailbox it must be called in order to

__ serd or receive mail messages. It should be called during the

-- Register I/0O submode.

procedure Register_Mailbox IMy_Partition_Prefix : in Dis.Component_Id;

My _Mailbox_Id : in out Mailboxes):

—— Returns true if mail messages are presenc, false if not.
funcrion Mail_ Is_Present (My Mailbox_Id : in Mailboxes) return Boolean;

—— Returns the number of mail messages currently in the mailbox.
function Num_Mail_Msgs (My_Mailbox_Id : in Mailboxes) return Natural;

-- Gets the type of the next mail message in the mailbox. This is
-- the first step in retrieving a mail message. After the type has
__ peen determined the appropriate Get operation can be called, or
-- if the type is User_Defined then the Get _User_Defined_Msg_Type
-- operation can be called.

function Get_ Next Msg_Type (My Mailbox_Id : in Mailboxes) recurn Msg_Types:

-- Cperations to get the next message from the mailbox
procedure Get_Safestore_Msg (safestore_Msg : out

Safestore_ Mailbox.Safestore Msg;
My_Mailbox_Id : in out Mailboxes) ;

procedure Get_Malfunction_Msg {Malfunction_Msg : out

Malfunction_Mailbox.Malfunction Msg;

My_Mailbox_Id : in out Mailboxes) ;

procedure Get_Enter_Msg (Enter_Msg : out Enter_Mailbox.Enter_Msg:
My_Mailbox_Id : in out Mailboxes);

procedure Get _Mega _Msg (Mega_Msg : out Mega_Mailbox.Mega Msg;
My _Mailbox_Id : in out Mailboxes);

-- This operation is to be used by the Router to get messages from its
-- mailbox. Address_For_Msg is the address for the locatin at which
-- the mmssage should be placed. This location must be capable of

-- hold & mil message of Max_Mailbox_Msg_Size (declared in this

~-- package). Dest_Partition_Prefix is che original destination of

—- the mail message. Msg_Type is the type of the mail message.

-~ My_Mailbox_Id is the routers mailbox id.

procedure Get_Router_Msg (Address_For_Msg : in System.Address;

Dest_Partition_Prefix : out Dis.Component_Id;

Msg_Type : out Internal Msg_Type;
My_Mailbox_Id : in out Mailboxes) :

-- USER DEFINED MESSAGE SUPPORT --

—- The Get_User_Defined_Msg_Type and Get_User_Defined Msg operations
-- provide support for receiveing user defined mail messages. When
-- possible the above predefined mail messages types should be used
-- because chey ensure that the sender and receiver are using the

H-15 ORJGINAL PACE IS
O POCR QUALITY

st ARl ol

. . . . E
-- same Tessaje tyre. There are als2 sS.Ipor:T patxages cravided -- €;=;:

-~ aid in using ma.l message ¢ the gredefined zyres. If zhis jerer.:
-+ routines are used iT (S UP IO Ine User IO ensure that the serder and
- - ’
-- reczeiver agv=e 3n the strucrture >f ~he Tail Tessage.
-~ 1% Zhe Je~ Nev- _Mall Ms3y T™— - functi:n rezurns “ser_Cefined as the
-- zyre of the rnex: message . :he mailbox and if it ig possible for

-- the mallbex 1o receive more than one type of user defined message
-- Then The Jet_User_lefined Msg_Type operation must be called to

-- detsrmine wnlith user defined message is in the mailbox. After

-- this has beer determined, then the apprepriate instantiation of
-- Ger_User_lefined_Msg can be called to recrieve the message from
-- the mailbox.

-- Gets the type of the user defined mail message.
generic
cype User_Pefined_Msg_Types is («<>);
function Get_User Defined_Msg_Type
(My Mailbox_Id : in Mailboxes) recurn User_Def:ned_Msg_Types;

-- Gets the user defined mail message.
generic
type User _Defined_Mail _Msg is private;
procedure Get_User_Defined_Msg
(User Defined Msg : out User_Defined Mail Msg;
My Mailbox_Id : in out Mailboxes): B

————————————————— called by sender of mail message ———————cmommmo_ N

-- Sends a mail message to the specified partition.
procedure Put_Safestore_Msg (Safestore_Msg : in

Safestore_Mailbox.Safestore_Msgq;
Dest_Partition_Prefix : in Dis.Component_Id):

(I

procedure Put_Malfunction_Msg (Malfunction_Msg : in
Malfunction Mailbox.Malfunction_Msg:
Dest_Partition_Prefix : in Dis.Componenc_Id):

procedure Put_Enter_Msg (Enter_Msg : in Enter_Mailbox.Enter_Msg:
Dest_Partition Prefix : in Dis.Componenc_Id};

procedure Put_Mega_Msg (Mega_Msg : in Mega _Mailbox.Mega _Msg:
Dest_Partition_Prefix : in Dis.Componenc_I4;;

procedure .. _Ds_Msg (Ds_Msg : in Mega Mailbox.Mega_Msg;
Desc_Partition_Prefix : in Dis.Component_Id):

-- This operation is to be used by the Router to send mailbox
-- message to parirtion’s mailboxes. Address_of_Msg is the address
-- of thd_, il mesage. Max Mailbox_Msg_Size storage units will be
-- taken from this address and send to the destination mailbox for
—- Dest_Partition_ Prefix. Mail Msg_Type is the ctype of the mail
-- message that is being senc.
procedure Put_Router_Msg (Address_Of _Msg : in System.Address;
’ Msg_Type : in Internal_Msg_Type:;
Dest_Parcition_Prefix : in Dis.Componenc_Id);

-- USER D:i ED MESSAGE SUPPORT --

-- The Put_.ser_Defined_Msqg operation is used te send a user defined

-- mail message. When possible the above predefined mail messages types
-- should be used because :hey ensure that the sender and receiver are

-- using the same message :ype. There are alsc supporc packages provided
-- to aid in using mail message of the predefined types. If this generic

(

-16

-:i-e is ised, it Ls up tO the user IO ensure

?
~ype User_Refined_Mall_Msg is private;
-ype User_Delined Msg _Tyres is I<>);
2 Put_User_Cefined Msg

Maii_Msg_Type : in User_Defined_Msg_Tyrpes;
User_Tefined_Msg : in User_Defined _Mail_Msg:
Dest_rartition_Prefix : in Dis.Component _Id;:

—ne serder and

—— Srutsdown the mailbex messaging system. Not to be zalled by parcitions.

crocedure Shutdown:

-- -- private

private

pragma Inline (Mail _Is_Present);
pragma Inline (Num_Mail_Msgs);

pragma Inline (Ger _Safestore_Msg):
pragma Inline (Get_Malfunction_Msg):
pragma Inline (Get_Enter Msg):
pragma Inline (Get_Mega Msg);

pragma Inline (Get _Router_Msg) ;

pragma Inline (Put_Safestore_Msg):
pragma Inline (Put_Malfunction_Msg):
pragma Inline (Put_Enter Msg};
pragma Inline (Put_Mega_Msg);

pragma Inline (Put _Router_Msg):

-- Storage_Units per word (32 bits)
Word : constant := 32 / System.Storage_Unit;

cype Internal _Msg_Type is new Set.Integer_32;

type Message is new Mit.Storage_Units (1 .. Max_Mailbox_Msg_Size);

- Message’Size = 2048 * 8 = 16384

for Message’Size use Max_Mailbox_Msg_Size * System.Storage_Unit;

type Headers is
record

Dest_Partition_Prefix : Dis.Componentc_Id;

Mag_Type : Internal Msg_Type:
Meg_Size : Natural := O;
end record;

for Head‘!i use
record at mod 4:

Dest_Partition_Prefix at 0 * Word range 0

Msg_Type at 2 * Word range 0 .. 31;
Msg_Size at 3 * Word range 0 .. 31;
end record;
for Headers'Size use 64 « 32 + 32;

type Mailbox_Message is
record
Header : Headers:;
Msg : Message;
end record;

=17

ORIGINAL PAGE I§
OF POCR QUALITY

B e

cr Mallbox_Message use
record at med 4

Header at J * Word range © 27
Msg at 4 * word range O .. 16333;
end record;
for Mailbox_Message’'Size use 128 - 16384; ~-#VER

type Mailbcx_Message_ftr 1s access Mailbox_Message:

-- Recerd Zor SGI
type Mailboxes is
record
Buffer_Pcr : Mit.Mailbox_Buffer_Prr:
Desc_Ptr : Mic.Mailbox_Desc_Ptr:
Tag_Ptr : Mit.Maiibox_Tag_Ptr:
Routing_Table_Index : Natural := 0;
end record;

-- Size allocated for mailbox messages
Mailbox_Message_Size : constant Natural :=
Message’Size / System.Storage_Unit:

-- Size of a mailbox message plus its associated header
Message_Plus_Header_Size : constant Nacural :=
Mailbox_Message_Size + Headers‘’Size / System.Storage_Unit;

-- Size of the message header
Msg_Header_Size : constant Natural := Headers’'Size / System.Storage_Unit;

-~ Size of the message type in the header record (it's an integer}
Msg_Type_Size : constant Natural := Integer‘Size / System.Storage_Unit;

Mailbox:

Abstract: This package provides the types and operations necessary to
interface with the mailbox communication system. Each mail
message must be of a specific type (ie. Safestore, Malfunction,
Encer, etc). The sender and receiver use this type to identify
the kind of message so that they know how to deal with it {(how
to build it and how to split it). This package provides support
for some predefined mail message Cypes such as: Safescore,
Malfunction, and Enter. These are common messages that will be
?I.d frequently and by many partitions. Senders and receivers that

__use these mail message types are guareented to be using the same
data types for the messages. This package also provides suppert
for "user defined” messages that are not widely used or shared
between many partitions. There are three generic subroutines which
provide support user defined messages: Build_User_Defined_Msg,

Get _User_Defined_Msg, and Split_User_Defined Msg. They are
instanciated with the user defined messacs types. It is up to
the users to ensure that the sender and -~ z2iver agree on the
struccure and data type of user defined r-.. messages.

Warnings: This package depends on the use of shared memory and shared
semaphores. The semaphores are only used during inicialization,

not during runtime.

There are two restrictions placed on the type used for User_Def-

i1-18

o

it

s e
-- To imsure this a length slause shoulld Te used

[
[
[%)

¥

-- ined_Msg_Tyres. Fir Ty/Ce TUSI have i siig

8]
+

o
(7]

-- {ex. for Type’Size use 32;;. 3Sezini, The va_ues of The tyre

-- ' must be positive. This means that I an ernumeration type (s
-- used irts litccerals musc net be glven regative va..es with a
- represencation clause.

-- This package depends upon compatibiiity between System.Address
- ard trne value of an access type. It uses Unckecked_Conversion
=i to corvert from x’Address TO an access type.

=19

ORIGINAL PAGE IS
OF POOR QUALITY

8.3.1 Enter_Mailbox
wiz*» Dis, Std_Eng_Tyres;
Tazxage Inter_Mailbox is

cazkage 3et renames 3td_Eng_Tyres;
-~ Data tyre for I0S Enter mailbox messages
tyre Encer_Msg 1s private: -- Initialize and IOS Enter daca

gereric
type Data_Type is private;
procedure Create (Msg : 1n out Encer_Msg:
Id : Dis.Term_Id;
Value : Daca_Type;
Index : Inceger := 0):

procedure Create_R6 (Msg : in out Enter_Msg:;
Id : Dis.Term_Id;
Value : Set.Real_6;
Index : Integer := 0}:

procedure Creare_R1S (Msg : in out Enter_Msg;
Id : Dis.Term_Id:
Value : Set.Real_l5;
Index : Inceger := 0);

procedure Create_I8 (Msg : in out Enter Msg:;
Id : Dis.Term_Id:
Value : Set.Integer_8;
Index : Integer := 0);

procedure Create_Il6 (Msg : in out Enter_ Msg;
Id : Dis.Term_Id;
Value : Set.Integer_l6;
Index : Integer := 0};

orocedure Create_I32 (Msz : in out Enter_Msg;

I~ .s.Term_Id:;
V. : Set.Integer_32:;

Ir...¢ : Inceger := Q0);

procedure Create_String
{Msg : in out Enter Msg; Id : Dis.Term_Id; Value : String);

function Id (Msg : Enter_Msg) return Dis.Term_Id;
function Index {(Msg : Enter_Msg) return Integer:
generic = . - _ .

cype _Data_Type is private;
funcrion "miue (Msg : Enter_Msg) return Data_Type;

function Value_R6 (Msg : Enter_Msg) return Set.Real 6;

function Value_R15 {Msg : Enter_Msg) return Set.Real_ l5;

function Value_I8 (Msg : Enter_Msg) recurn Set.Integer_8:;

function Value_Il6 {Msg : Enter_Msg) return Set.Integer_l16:

function Value_I32 (Msg : Enter_Msg) recurn Set.Integer_ 32;

function Value_String (Msg : Enter_Msg: Length : Natural) return String:

procdedure Poke (Msg : Enter_Msg):

R

Id_Not_Found : exception:
-- raised when Poke is called with an identifier thac
-- has not been registered ac the local level.

11-20

i_Not_Connected : exceprion:
.- raised when Poke is zalled with an idencifier trat
-- has not been connected, wizh an address.

Toc_Large : exception:
-~ raised by Creacte if the daca type Iis Too Dbig to fit
-— in the value buffer.

privace
-- secrect
end Enter_Mallbox;

ORIGINAL PAGE IS
OF POOR QUALITY

fl-21

i

8.3.2 Malfunction_Mailbox

wizh Cis, 3cd_Eng_Tyres;
ratxage Malliunction _Mallbex Is ,

cackage 3Set rerames 3td_ZIng_Tyres;
-- Daza zyre for Malfunction mallbox messages
type Mallunctlicon_Msg is private: -- Malfunction Messages

procedure Create [Msg : in out Malfunction_Msg:
Id : Dis.Malfunczion_Id;
on_Cr_Cff : Set.On_Cff := Set.Cn;
Scale : Set.Real_ 15 :z 0.0;
Bias : Set.Real_15 := 0.0;
Option_Value : Natural := 0);

function Id (Msg : Malfunction_Msg) return Dis.Malfunction_Id;

generic

type Discrete_Type is (<>);
function Option (Msg : Malfunction_Msg) return Discrete_Type:
funccion Option_Value [Msg : Malfunction_Msg) recurn Natural;

function Pl (Msg : Malfunction_Msg) return Set.Real_l5;
function P2 (Msg : Malfunction_Msg) recturn Set.Real_l15;

function Stace {Msg : Malfunction_Msg) return Set.On_Off;

procedure Poke (Msg : Malfunccion_Msg):

Bad_Size : exception;
-- raised by generic Selector or Discrete if the generic actual
-- parameter (enumeration type) is not 8, 16, or 32 bits long

privace
-- protected from sight
end Malfunction_Mailbox;

H-22

(

8.3.3 Safestore_Mailbox

-

fatxage 3alesjore_Mallbox IS
__ Taza type for Rezurn-to-Safestore mallZex messages

tvre Jafesctore Msg is private; -- Return Lo Safestore daca
-yre 3yze 1s range J .. 255;

Zsr Byte’'Size use 8

tyre Value_Buffer is array {Positive range <>) of 3yte:

procedure Create {(Msg : in out Safestore Msg;
Id : Cis.Message_Id;
Value : Value_Buffer);

function Id (Msg :@: Safestore_Msg) return Dis.Message_Id;

generic
type Data_Type is private;
function Value (Msg : Safestore_Msg) return Data_Type;

Too_Large : exception:;
-~ raised by Create if the data type is too big to fic

privace
-- invisible
end Safestore_Mailbox;

“d;;
b
.

>|;

11-23

bt bl s

ORIGINAL PAGE IS
OF POOR QUALITY

8.3.4 Mega_Mailbox

with Cis, 3td_Eng_Tytes:
ractkage Mega Mailtox is

racxage Set renames 3td_Ing_TyTes:
Max_Znzries @ constant := 60;

tyTe Mega_Msg .s privacte;

-- For many (Term_ID - value;

Sets at once.

-- The sender of the Mega_Msg must call Creace tefcore appending anything

-- to the Mega_Msg.
procedure Creace {Msg
procedure Clear {Msg

in our Mega_Msg):
in out Mega_Msg):

generiz
type Daca_Typeé is privace:
procedure Append (Msg in out Mega_Ms,
Id : Dis.Term_Id;
Value Daca_Type) ;

procedure Append_R6
[Msg : in out Mega_Msg: Id

procedure Append_R15S
(Msg : in out Mega_Msg; I3

procedure Append_I8 {Msg in out Mega_Msg;
Id : Dis.Term_Id:
Value Set.Integer_8);

procedure Append_Il6 (Msg : in out Mega_Msg:
Id : Dis.Term_Id;
Value Set.Integer_l16);

procedure Append_I32 (Msg : in out Mega_Msg;
Id : Dis.Term_Id;
Value : Set.Integer_32);

procedure Append_String
(Msg : in out Mega_Msg: Id

-- to avoid the exception Too_lLarge
function Appendable (Msg

Dis.Term_Id; Value

Dis.Term_Id; Value

: Dis.Term_Id; Value

After sending it, the sender should call Clear.

Set .Real_§6};

Set .Real_l15)};

scring):

Mega_Msg; Bits : Integer} return Boclean;

-- most of the "query®/“selector” operations operate on the *current encry” .
ry

-~ All entries in a mega message arrive as “valid-.

-- invalidated by poking it or asking for its value.
-- “Poke_AL)L? will only poke valid entries.

procedure Poke (Msg : in out Mega_Msg: Only_If_valid

An entry is

Boolean := True);

-- poke the current entry; if it is already invalid, it will not

-- be poked, unless Only_If Valid is set to false.
-- be poked anyway.
procedure Poke_All (Msg
-—- poke all valid entri=s

in out Mega_Msg!;

-- invalidate an entry .: you don't want it poked.
-- Zero means the current entry.
procedure Invalidate (Msg in out Mega Msg);

Then it will

function Number Of _Entries (Msg : Mega_Msg) recurn Natural?

procedure First (Msg in out Mega_Msg):

11-24

EER [N

vl

C

OR{INAL PAOE 18
OF POOR QUALITY

(Msg : 1n out Mega _Ms3l:

p— ‘Msg : in ouC Mega_Ms3;
Id Di§.Term_Id:
Found : out Bcoiean!:
sup=-ion AC_End {Msg : in Mega_Msg. return BooLean;
aration Td does not invalidate an entry.
14 (Msg : Mega_Msg@) recurn Cis.Term_Id;
__ recrieving a value invalidates izs entry. these will
-- poked automatically by Poke or Poke_All.
generi:
cyge Data_Type is private;
procedure Value (Msg : in out Mega_Msg; Data : out Data_Type);
procedure value_R6 (Msg : in out Mega Msg: Data : out Set.Real_6):
procedure value_R15 (Msg : in out Mega _Msg: Data : out Set .Real _15);
procedure value_I8 (Msg : in out Mega_Msg; Data : out Set .Integer_8);
procedure Value 116 (Msg : in out Mega_Msg; Data : out Set.Integer_16);
procedure Value _I32 (Msg : in out Mega_Msg; Data : out Set.Integer_32);
procedure value_Scring (Msg : in out Mega_Msg; Data : out string);
__ be sure the string variable is the correct length
Not _Created : exception;
- raised by Append if the Mega_Msg has noC yet been initialized
-- using Create.
Too_Large : exception;
-— raised by an Append if the data type is too pig to fit in the
-- remaining portion of the Mega_ Msg.
N]
Too_Many_Entries : exceptlon:
-- tried to append more than Max_Entries entries.
End_Error : exception:;
—— tried to advance beyond the end of the Mega_ Msg.
private
-— ya can't touch this
end Mega_Mailbox:
i\—.j’

ORIGINAL PACGE IS
OF POOR QUALITY

i1-25

-
=

iy

raczkajze Jer rernames ITi_Eng_Tyres;
-- The 2I3 rackage is an "obiec: marnager”. The managed object is
-- the Distribucted I[dencifier Spec (DI3) ctakie. The package

-- provides a numker of akstract data zypes for the obiects which
-- poru.ate the DIS cree in the body.

-- ADT Definition Handle

-- Component_ID privace Component_Handle
- Term_ID private Term_Handle

-— Message_ID private Message_Handle

-- Type_ID private Type_Handle

-~ Type _Tag open {enumeration)

-- Malfunction_ID private Malfunction_Handle

- The DIS must be searched once to get an identifier’s handle,

-- which points to the node where the data is located. Then all

-- access to that identifier’'s data must use the handle; this reduces
-- the number of searches. Dis identifiers (objects with ‘_ID' suffix)
-- are unique and distributable among different main programs and

~-- network nodes; the handle may only be used in the context of the

-- main program in which the conversion has been performed.

il

Jedl At

- Here is an example of a hierarchy of identifiers that can be
-- placed into the DIS.

-- Roborics (Component _ID)

-— SPDM (Component _ID, prefix => true)
- Fail {Malfuncrion_ID)

-- SSRMS {Component_ID, prefix => : .e)
- Joint_1_Yaw (Term_ID)

-- Joine_1_Roll {Term_ID)

-- MT (Component _ID)

- Rolli_Type {(Type_ID)

-—- Yaw_Type (Type_ID)

-- Environment (Component _ID}

-- USAD (Component_ID}

(Component_ID)
(Component _ID)
{Component _ID, prefix => true)

-- = Tank (Componenc_ID array, 6)

- Temp_Sensor (Term_ID array, 3)

- FPail_Temp_Sensor {(Malfunccion_ID array, 3)

-- Storage_Leak (Mal function_ID) ;

- Current_Pressure {Term_ID)

- Valve_Module (Component _ID}

- Rocket _Assembly {Componenc _ID, prefix => true)
- Rocket _Engine (Component_ID multiple, 6}

-- Cac_Bed_Fail (Mal function_ID array, 2)

-— Heater_Fail (Malfunction_ID}

-— Thruster {Componient _ID array, 13)

- Cac_Red {Component _ID} cT -
- Prop_Valves {Component _ID)

- Chamber_Pressure (Term_ID)

11-26

2

TC A S

AR N ORIGINAL PAQE IS

rR R =27 OF POOR (2lJl%tJ1'V

xr
v Y

the oy Taxing cactxages
i cackages, as in
form to a set of

e zhe examp.es for

-~ I3AC_Defs or Rocker _gngine_Defs! whi

__ rules and zall trne Register funcilisn
-~ Roiw these pacKkages LookK.

_Id is private;

mpcnent @ constant Component _Id;

type Component_Handle is private;
Null_Tomp_Hdandle : constcant Zomponent _Handle:

type Term_Id is private;

Null_Term : constant Term_Id;

type Term_Handle is privace;
Nuli_Term_Handle : constant Term_Handle:;

Max_Total _Terms : constant := 100_000;
subtype Term_Index is Set .Natural_32 range 0..Max_Total_Terms;

type Type_Id is private;

Null_Type : constant Type_Id;

type Type_Handie is private;
Null_Type_Handle : constant Type_Handle;

type Message_Id is private; - -
Null_Message : constant Message_Id;

type Message_Handle is privace:

Null_Msg_Handle : constant Message_Handle;

type Malfunction_Id is private;
Null_Malfunction : constant Malfunction_Id;
type Malfunction_Handle is private;

Null_Malf_Handle : constant Malfunction_Handle;

-- Type_Tag is used in Register Type

type Type_Tag is (Null_Tag, -- placeholder
Integer_Tag, -- 32 bit integer
Short_Tag. -- 16 bit integer
Byte_Tag, -- 8 bit integer
Float_Tag, -- 32 bit float (SET.Real_6)
Double_Tag, -- 64 bit float (SET.Real_l5)
Character_Tag, -- a single character
Scring_Tag, -- a fixed-length string
Enum_Tag) ; -- for enumeration ctypes
type User is (Look, -- I0S readable
Look_Enter, -- IC0S readable & writable
Inicialize); -- datastored & initialized term
type User_List is array (Positive range <>) of User:
Look_Only : constant User_List := (1 => Look) :

Look_Initialize : constant User_List := (Look, Initialize):
Look_Enter_Inicialize : constant User_List := (Look_Enter, Initialize}:

Null_Address : constant System.Address := Bunuchs .Null_Address;

tyve Address_Array is array (Positive range <>} of System.Address:
Null_Address_Array : constant Address_Array := (1 .. 0 => Null_Address):

type Value_List is array {Natural range <>) of Nacural;
NﬁlL_Value_Lis: . constant Value_List := {1 .. 0 => 0});

N

Q

P

-~ 3catic scperatlins on Inhe Ll

reazed wizh s2aTtiz infdrraticn using
aw. This stacticz infcrmation insiudes
malfunczi:ns, as well as

-- ‘ar mbieccs, types, and
s-rmacion asscciazed with these entitles ‘sush

-~ rrar are tzz e used for maifunctisn routires'. ati
Saymazion in che OIS is consistent 2n all plaziarms ané in all

-- appilcacions ‘ineluding all off-line applicacions; as lsn

- everyone .s u1sing the same version of the DIS. The DIS is

-- augmented with dynamic inf~rmacion at runtime thrcugh the use

-- of the *Connect’ facilicies.

funccion Register_Component (Parent : Compeonent _Id;
Name : String; -- length <= Max_Comp_Name
Prefix : Boolean := False;
Lengch : Natural :z O;
Labels : String := **) return Component_Id:;
~-- The Register_Component operation creates a node for a new level
—- in the DIS cree at the position indicated by the Parent parameter.
-~ The Length parameter must be used to register multiple components
—_ which have the same contents. This allows a single Defs package
-- to register multiple copies of a sec of identifiers. 1In this case,
-- the Defs package can be said to resemble a record definicion, and
-- the Zomponent_ID array can be said to resemble an array of records. E

-- A 'prefix’ is a Componenc_ID which is registered with the Prefix
-- parameter set to True. A prefix is required in the ’‘ancestry’ of
-- any Term_ID or Malfunction ID. Also, a prefix’'s ‘descendancs’ may
-- not include any other prefix Component_IDs. These rules are

-- enforced by the DIS through the exception Prefix_Error. A prefix
-— identifies a single mailbox; all Terms_IDs and Malfunction_IDs are
_- delivered to their respective partitions via the mailbox that is
-- identified by the prefix under which they were registered.

function Register_Term (Parent : Component _Id;
Name : String: -- length <=z Max_Id_Name
The_Type : Type_Id;
Users : User_List := Look_Enter_Initialize;
tength : Nacural := 0;
Labels : String := **) return Term_Id:

-- Register_Term requires a Type_ID to indicate how the daca

-~ is to be interpreted. A Term_ID array is an aggregate of

-- Term_ID‘s which have the same type. A Term_ID array

-- is registered by supplying a Lengcth parameter > C. If a

-- labels parameter is supplied, the labels will be used to

-- index the Term_ID array.

function Register_Message (Parent : Component_Id;

Name : String: -- length <= Max_Id_Name
Bits : Nacural;
Safestore : Boolean := False) return Message_Id;

-- A Message_ID is very similar to an Term_ID but is

-- only used for software backplane messages. This

_- routine must always be supplied with a number of

—— bits. No type information is supplied. A flag

—- ‘ndicates whether or not the item is to be retrieved

-- for safestore. Bits is the size of the message in bits.

function Register_Type (Parent : Component_Id;
Name : String: -- length <= Max_Id_Name

The_Tag : Type_Tag: ORIGINAL PAGE IS
Size : Nacural := O;
’ OF POOR QUALITY

li-28

¢

Low_3ound : String := "7/
High_Round Scring = "7

. valrces : Va.ie_Lisz := Null_Value_LIsT;
rapels : Scring := **! return Type_Id;

Type_IDs provide the apility to interpret daca accessed
wizh Term_IMs. Each Register Term musc te aczomrpanied by
a Type_:iD rarameter. Bach Type_ID is registered using a ’'tyre
rag’ which indicates which class of type it will celong to.

For zag: Required: Optional:
Null_Tag (error)

Integer_Tag Low or High bound
Shorc_Tag E Low or High bound
Byte_Tag . Low or High bound
Float _Tag Low or High bound
Double_Tag Low or High bound
Character_Tag Low or High bound
Sctring_Tag Size

Enum_Tag Labels Size, Values

When registering a Type_ID for 8, 16, or 32 bit integers (Byte_
Tag, Shorc_Tag, and Integer_Tag respectively), single or double
precision floating points (Float_Tag and Double_Tag), or single
characters (Character_Tag), a Low or High bound may be supplied.

Low and high bounds must be in the proper numeric or character
order, and must have the correct format (which depends on the type
tag -- byte, integer, short, float, double, or character).

Labels must be supplied for Enum literals. The Labels
parameter specifies a list of names conforming to Ada syntax
separated by commas.

Size must be supplied for String_Tag'd types. It is
optional for enum tag’d types (the default is 8 bits).
Size is the number of characters for string tag’d items
and the number of bits for types with Enum Tag. For
strings, Size must not be greater than Max_String.

Values are the representational aspect of enumeration
cypes: if no list is provided, che defaultc ('POS)
numbering (0,1,2) is used; otherwise, each enum value
is stored.

Registration of Scring _Tag‘d Type_IDs requires a Size
(chéhumber of characters in the string, as with regiscerinq_

T.rm, = .

?ib-_xn-’of Bnum_Tag must be supplied with a Labels parameter
(the D18 wancs to see Ada-like identifiers separated by commas for
all *labels” parameters). Optionally, the number of bits that
objects of this type use can be specified (the default number is
eight bits), as well as a list of values that matches to the
enumeration representation of the Ada type {chis is not necessary
for enumeration types with no rep spec). These cthree parameters
(bitss, labels, and values) can be obtained by instantiating a
generic call Enum_Functions which accepts the Ada enumeration
type as an actual parameter. This is provided soc that the user
can avoid hard-coding lists of labels and values chat duplicate
the ones provided in the type declaration and rep spec. (Enum_
Functions can also be used to get a label list from an enumeration

1-29 gf’ai:\'z’%‘- PAZE IS
POOR QueLiTy

W

ot B

-- zZyge I>r zalling cther ZI3 Iinction ~at have lare. lis:t gara-
-- Teters).
- To register an array with the Z.., use the Register_Term

-- function with a Lengrth raramezer. This will zreace a ser
-- 5f 273 ‘dentiflers; a length = § creates only one. ALl of

vy

-- The terms cthus created will have the same type o5r tag.

-- Yoy zan simulate receord types with the DIS also. In

it4aticons that tall for an rarray of records”, you zan defire
compernent id array; the Term_IDs in the "_Defs* package

Sr that comporent would be analogous to Ada record componencs.

-- You can also crearte a generic package with Term_IDs in it; if the

-- package has a generic object parameter of type DI3S.Componenc_ID,

-- and this i{s used as the "Parent” of the Register_* calls, then the
-- package can be instantiated in the ¢ _Defs® packages anywhere in your
-- DIS hierarchy.

|
|
oW

i

- The Sstf_Defs package registers Type_IDs for the ‘da types

-- that are declared in the Std_Eng _Types and Std_Eng_Ur..zs packages.
-- For partition data that is declared of these types, you may use

-- the Sstf_Defs Type_IDs directly, or you may register subtypes based
-- on those Type_IDs. It is best to use subtypes with well-chosen

-- sub-ranges, so that the IOS user can easily manipulate values to

-- be entered.

-- Register an integer-based subtype
function Register_Subtype (Parent : Component_Id;
Base : Type_Id;
Name : String := =~;
Low_Bound : Set.Integer_32;
High_Bound : Set.Integer_32) return Type_lId;

-- Register a float-based subtype
functicon Register_Subtype {Parent : Component_Id;
Base : Type_Id:;
Name : String := **;
Low_Bound : Set.Real_15;
High_Bound : Set.Real_l15) recurn Type_Id;

-~ Register a character-based subtype
function Register_Subtype (Parent : Component_Id;
Base : Type_Id;
Name : String := *";
Low_Bound : Character:
High_Bound : Character) return Type_Id;

-- These functions are used to register new Type_Ids which are derived
-- from previously'registered Type_Ids, whicr are called “base’ Type_Ids.
-- Any Type_J@ with tag Byte_Tag, Short_Tag, Integer_Tag, Float_Tag,

-~ Double _Twg, or Character_Tag can be used as a base Type_Id. Base

-- Type_Ids with inappropriate tags will raise Tag_Error.

-- Since the only reason to register a type using these funcrions is to
-- provide different bounds for a previously regiscered Type_Id, the

-- Low_Bound and High_Bound parameters are not optional. The bit size
-- of <“he new Type_Id is the same as that of the base Type_Id.

func- Register_Malfunction {Parent : Component_Id;
Name : String; -- length <= Max_Id_Name
Options : Type_Id := Null_Type:
Pl_Name : Scring := *7;

Pl_Low : Set.Real_15 := 0.0;

1130

[T

d

<&

ORIGINAL PAGE 5
OF POOR QUALITY

it

Pl1_Hign Jer.eal_l3 := 0.3;
2L _Tyre Tyre_Id := Null_Type:
, £2 _Name 3vring 1= "7
P2_Low : Ser.Real_l5 := 0.G;
P2 _High Ser.Real_ 15 := 2.3;
P2_Tyre Tyge_T4d := Null_Tyre;
Store Becolean := True;
Length Natural = O
Labels : String := **) return Malfunction_Id;
__ mrere are ‘our xinds of maifunctions:
- Simple: fa.x.a. paramecerless) This is regiscered
- by supplying no Options or P1/P2 relatced

- paramecers.

- Cprtions: This is registered by supplying a type id

- for the Options parameter. It must be Enum_Tag’'d.

- Pl: This is registered by supplying a string for

- Pl_Name and a type id for Pi_Type. Pl_Low

- and P1_High can be supplied to give different

- bounds to the parameter that override the low

- and high limits of P1_Type. The name of the

- Pl_Type is used as the “units” displayed on IOS.

- P1_P2: This is registered in the same way as a Pl
- malfunction; rules and options for the P2_
- parameters are the same as for a P1_ parameCers.

- The Store flag indicates whether or not a malfunction is

_ datastored & intitialized. It defaults to true; do mnot

_ set it to false; in fact, do not set it at all, since cthis
- parameter will be deleted in the near future. Setting it
- to False raises Registration Error.

- To register an array of malfunctions, set Length > 0.

- Labels may be supplied as an optional parameter:; if

- present, the number of labels supplied must be equal co
- the Length value.

generic

cype Enum is (<>}

package Enum_Functions is

—- The Bnum_Functions package can be instantiated with any
-- Ada enumeration type, so that the information needed by
-- the Register_Type function for Enum_Tag types can be

-- retrieved automatically. Instantiacing this package does
-- not modify the DIS table.

function Labels recurn String;
function Num_Labels return Natural;
function Size return Natural;
function Values return Value_List;

end Enum_Functions;

-- The Report procedure produces a file which divulges the
-- inner secrets of the entire DIS. The Load procedure

-~ brings such a file into the DIS, populacing it withouc
-- elaborating *_Defs® packages.

fgbe Tl

11-31 ORIGINAL PAGE 1§
. OF POOR QUALITY

cr-ozedure Regpcorz Ti_File Izring; %
Users /ser_L.3t Lo« _Znzter, Inlizizl:ize
Zxgand Zco.ean = .

-~ Lcad will fail iZ tne file 1z z2e _:2Zeé has noT Cceen

-- created wizth a :27plete user lisz ‘all users specified;,

-~ or if the versicn number in the file dces net match the

-- TurvenI vers.on numker {the Dis maintains a versiosn numcer

r the Lecad/Report routines!. The excertion is Load_Versicn_zrror.
i.e_Li1sT => true Teans From_file s not itself a report

-- {ile, but zonrains a list of report filles. Load_Error is

-~ raised if zhe Load file is zorrupt or created improperly.

~- Load _Name_Error is raised if a lcad file does not exisc.

procedure Load [(From_File : String: File_List : Boolean := True):

-~ supply the version number of the Lcad/Report routines.
function Report _Versicn return Natural;

-- Reglstration & general exceptions

Syntax_Error : exception:;

-- An identifier name or a label name has improper Ada

-- syntax or exceeds the limit for number of characters

-- {Max_Comp_Name for componencs, Max_Id_Name for other IDs,

~- and Max_Label_Name for labels; these constants are defined -
-- toward cthe end of the visible part of this package spec).

-~ Raised by: *
- Register_ routines (the Name parameter)

- Register_Component {arrays -- the Labels paramecer)

- Register_Term (arrays -- the Labels parameter)

-- Register_Malfunction_Array (arrays -- the Labels parameter)

- Register_Type (for types with Labels)

Format_Error : exception;

-- An improperly formatted string was given for a low

-- or high bound {e.g. a low bound for an integer tag’d

-- 1d is given as "0.0"), or a Labels parameter has

-- improper formac.

-~ Raised by: -
-— Register_Type

Tag_Error : exception;
-- A type tag was used incorrectly (for example,
-- no length parameter was supplied with String_Tag).

-- Raised by:

- Register_Type

- Type_ID query routines (String_Length, Label_Index, Values,
- A " Label_Value, Value_Index, Low_Bound, High_Bound,

- L Number Of _Labels)

-- Register_Malfunction (if Options parm is not Enum_Tag'd}

- Regiscer_Subtype (if che base type is incompatible with the
-— i bounds parameters, e.g., the base type has a floating
- point tag, bur the bounds are integers).

- Connect_Term (using Symbol parameter, if registered symbol
- has a ctype incompatible than the DIS Type_ID's Tag).
- Connect_Malfunction (using Symbol parameters, if a

- regisctered symbol’s type is not compatible with

- the type tags required for the DIS Malfunction_ID).

Subtype_Error : exception;

-- The bounds given for the subtype are not a proper sub-range of : "]
-- the bounds of the base :zype. %
-~ Raised by:

-- Register_Subtype

11-32 ORIGINAL PAGE IS
OF POOR QUALITY

Iegiscracion_Error @ exteptlion;

__ A Ma.function_ID is peing registered, but nen-sompatible rarameters

-- are bteing supp led to ir. For example, an Cptions carameter .s
-- teing supplied as well as a Pl_Name parameter. 2r a Pz_Name

__ is meing supplied buc not a Pl_Nare. Cr 3zore .s set to False.
-- Raised by:

-- Jegiszer_Malfunction

or : exceprion;
n =biects are not 8, 16, or 32 bits.

-- Enumerat.i?
-- Raised by:
-— Register_Type

- Enum_Functions package instantiations

Size_Zrror : exception:

-- The size, in bits, retrieved from the symbol map for Connect_Term
-- of Connect_Malfunction is different than the size supplied to the
-- DIS (via Register_Type) for the data associated with the symbol.
~-- Raised Dby:

-— Connect_Term (using Symbol parameter)

- Connect_Malfunction {using Symbols parameters)

Connect_Error : exception;

-- The parameters supplied as Symbol strings to Connectc_Malfunction
-~ do not match the parameters given to Register_Malfunction, e.g.,
—- the Malfunction_Id was registered as an Options malf, but a symbol
-- was supplied for the Pl parameter to the Connect routine. Or a
—— Connect_Malfunction routine was called which required either an
-- array of Malfunction_IDs or a single one, and the other was

-- supplied to ic.

-- Raised by:

- Connect_Malfunction (using Symbols parameters)

-- Connect_Malfunction

-— Connect_Malf_Array

Id_Not_Found : exception;

—— An identifier specified as part of a request was not in the DIS.
-— When converting a string to an ID or handle, it is often caused
—— be a misspelling; it is also of the result of not *with’-ing the
- » _Defs” package that contains the identifier, or not loading a
-- Dis reporc file.

-- Raised by:

- Register_ routines (the Parent was not found)

- Handle

- Convert

-— Prefix_Comp

No_Prefix : exception:

-- The iflentifier given to a Prefix_Comp function is not
ated with any Component_ID prefix.

-- Raisnagd by:

- Prefix_Comp

Length_Error : exception;

-- The number of labels given for a componenc,

-~ term, or malfunction array registration

-- does not match the Length parameter.

-- Or the Size parameter used for registering

-- a String_Tag’'d item is greater then Max String.

-- Raised by:

- Register_Component (for arrays)

- Register_Term {for arrays)

-~ Register_Malfunction (for arrays)

-- . _Register_Type {for string_tag)

ORIGINAL PAGE IS I1-33

OF POOR QUALITY

P dam A

Limic_Zrror : excsption:s %

-- The maximum numper >f .dentifiers nass czeen regis:tered

-- urder the <urvent Parent compcnent. The maximum is

-- different for each tyge oI ildentifier, and the limi:cs

-- are represented by the constants Max_Tomporents, Max_Terms,

-- Max_Types, Max_Messages, and Max_MalIiunctions.
-- Raised py:
-— Reglster_ funccions

No_Llakels : excepzion;

-- A labeil-gquery routine was called but no latels

-- were regiscered with the idenctifier.

-- Raised Dy:

-- Index functions (Comp_, Term_, & Malfunction_ Handles)
- Label funccions

- Label _Index

-— Label_Value

Label _Not_Found : exception:

-- The requested iabel was not found in the list

-- of labels associated with the identifier.

-- Raised by:

-- Convert routines for Component, Term, and Malfunction identifiers
-- Index functions (Comp_, Term_, & Malfunction_ Handles)

-~ Label functions

- Label_Index

-- Label _Value

LN |

Value_Not_Found : exception;

-~ The value given for an enumeration assocciation
-- is not in the value list, or the index given
-- for an id array or a multiple component is not
-- in the proper range.

-- Raised by:

- Value_Index

- Label {Tyre_Handle)

<

Index_Error : exception:

-- An index given for a c¢omponent, term, or malfuncrion

-- array or for an Enum_Tag‘d type identifier, is out of bounds
-- Raised by:

-- locs of things

Not _Array : exception;

-- The operation requires the handle supplied to be

-- pointing to an identifer that has been registered as an
-- array {(i.s., the Length parameter was registered > 0).
-~ Also, raised by Connect_Term if a Term_Id was passed in
-- which 359& pot represent the first element of a Term_Id
-- array, But Gonnect_All is True.

-- Raised By:

-- all routines which require a handle for a term, malf,
-- or component array.

—— Connect_Term

Prefix_Brror : exception:

-- A Component_ID is being registered as a Prefix, but one
-- of it's ancestors is already a prefix:; or, a Term_ID or
-- Malfunction_Id is being registered, but no ancescor

-- component in the Parent is a Prefix.

-- Raised by:

- Register_Componerntc

-— Register_Term

-— Register_Malfunction ONG‘NAL PAGE [+3
OF POOR QUALITY

=34

"

Duplicace_Srror @ exceptlion;

—— An iQentifier has been registered with Ihe sare nare

__ as arother under the same compocnent parent. It 1s not

-- rermissable to have more rhan 2re Term_IT, for inszarnce,

__ -a_led *XYZ* registered under che same gparent chat already
-—- ras 3 Term_iD regiscered called "XYZ7. However, a Term_Id
-~ an 1 Message_Id (e.g.) can both be registered under the

-- sare :omponent parent, and nhave the same narme. Also, a

_~ Term_Ii called *XYZ* may ke registered even if ancther

—— axyz* Term_Id rnas already been registered under a different

-- parent. Only the full name must be unique for a particular
-- xind of identifier.
-- Ralse by:

-—— Register_Component
- Register_Term

-— Register_Type

-— Register_Message

- Register_Malfunction

Load_Version_Error : exception;

-- A report file being read via the Load procedure has

-— a different version number than the current Report version
-- number which the Dis maintains internally. This is the

-- number returned by the Report_Version function.

-- Raised by:

- Load

Load_Name_Error : exception:

-~ A load file (either the file name given to the Load procedure
-—— or a file name in a list of files) does not exist.

-- Raised by:

-- Load

Load_Error : exception:; .

—— The Load procedure has detected that its input file has
—— an incomplete list of Users in its first line--the list
—_ must contain all of the users in the correct order; or,
-— the file {or a file in the file list) does not exist; or,
-— the file has badly formatted lines or is incomplete in
-- some way.

-- Raised by:

- Load

Null_Error : exception:

-~ A null identifier or handle was supplied.
-- Raised by:

- most query routines

-- Navigate.Next routines

- Opo;iéionl on CBmponenc_ID and Compornient_Handle objects.

procedﬁg; Create_Symbols
(The_Component : in out Component_lId; Parent : String):

-~ Convert’s String argument must contain an Alphanumeric version
-- of the ID (”*Robotics.SPDM.Arm(2)°}.
procedure Convert (String Component : String:

The_Component : out Component_Id;

The_Handle : out Component_Handle):
function Convert (String_Component : String) return Component _Id;
function Convert (String_Component : String) recurn Component_Handle;
function Handle (Of_Component : Component_Id) recurn Component _Handle:
function Image (Of_Component : Compoﬁenc;ld) recturn Scring;
function Value (Of_String : String) return Component_Id;

-3
° ORIGINAL PAGE IS

OF POOR QUALITY

PRI LT A

fanetisn Full_Nare [Thne_lompenent 0 IDTRIDERT

n The_Narme
Pralix return 2cciean;
X -~ Numkcer_T:I_) Componenz _I4) return Nacural;
fincticrn Jubcomponent
The_lompernent : -cmponent_Id; Compcnent_Num : Naturaij

rezurn Jompeonent _I4:

- Turcoliang Trhat work Snotompenent arrays. If che Compenent

-- rassed 5 these is not an array, -hen Not_Array is raised.

-- The function [d_Array zells whether a component .s one or not.
function Id_Array [The_lomponent : Compcnent_Handle! return Boolean:
function Length {The_Array : Componenc_Handle) return Naturai:

funccion Label [The_Array : Component_Handle:; Index : Natural := 0)
return String:
funcrion Index (Of_Array : Component_Handle; Label : String := **)

recurn Positive;

function In_Array (The_Component : Component_Id:; The Array : Componenc_Id)
recurn Boolean;

function Component (Of_Array : Component_Id; Index : Positive)
return Componenc_Id;

function Component (Cf_Array : Component_Id; Label : String)
return Component _Id;

furiction Component (Cf_Array : Component_Handle; Index : Positive)
return Component_Handle:

function ~omponent (Of_Array : Componenc_Handle; Label : String)
return Component Handle;

il g Rad i)

type Comp_Id_List is array (Positive range <>) of Component_Id; e -

type Comp_Handle_List is array (Positive range <>) of Component_Handle; ' -) %
function Get_Prefixes return Comp_Id_List;

function Get_Prefixes return Comp_Handle_List;

_- The Build function creates a Component_Id by ®"concatenation® of
-- related Comporent_Ids. The following rules apply:

- *) The components listed must be related as ancestor/decendant.
-- *} They musz be in order of ancestor/descendant (e.g. great-

-— great-great-grandparent, grandparent, child).

- *) Intermediate levels of the lineage may be skipped.

-— *) This function does not enforce these rules, since it

- would be too expensive time-wise to look up the daca.
function Build {Comp_List : C: o_Id_List) return Component_Id;

-- The prefix name is the name given to a prefix when Connect_Prefix
-- is called. The Partition_Id is added to a prefix by the Dis when
-- Connect_Prefix is called. Particion_Id returns 0 if Connect_Prefix
-- has not been called for the componenc.
functien efix_Nahe (The_Component : Componenc_Handle) return String:
function Pértition_Id (The_Component : Component_Handle)

recurn Set.Integer_32;

Subcomponent_Error : exception:

-- if the Component _Num argument is larger than the
-~ number of levels that make up a component or there
-- are no subcomponents.

-- Qperations on Term_ID oblezcs.

procedure Create_Symbols (The_Téfﬁ : in out Term_Id; Parent : scring);

-~ Convert's String argument must contain an Alphanumeric version
-- of che ID [“Robotics.SPOM.Arm(2).Joint_l_Yaw®}.

Ii-36 ORIGINAL PAGE IS
OF POOR QUALITY

i
C

g

gro-ediure Convert t3rring_Term ¢ 3trl
ol erm_Id;

-

ous

: out Term_Handle

3cring) return Term_Id;

Convert {3
Conver= .String_Term : String, return Term_Handle;

. Hardle F Term : Term_id’ recturn Term_nandle;

o1
Image (Cf_Term Term_Id) return String:
A Value (2f_3tricng Scring) return Term_Id;
f.nccicn Build L Iomp Component_Id; Term : Term_Id) return Term_Id;

czicn The_Component {(The_Term
furction Full_Name (The_Term :
f,nction The _Name (The_Term
fuynction The_Type (The_Term
function The_Tyre (The_Term

Term_Id} return Component_Id:
Term_Id} return Scring;
Term_Handle) return String:
Term_Handle) recurn Type_Id;
Term_Handle) return Type_Handle;

-- Lookable returns True if the term was registered with Look
-- or Look_Enter in the user lisc. Enterable recurns True if
-— the Term was registered with Look_Enter in the user lisct.
function Users {The_Term Term_Handle) return User_List;
function Lookable (The_Term : Term_Handle) return Boolean;
function Enterable (The_Term Term_Handle) return Boolean;
function Inicializable (The_Term Term_Handle) return Boolean:

-- operations on Term_ID arrays
function Id_Array (The_Term Term_Handle) return Boolean;
function Length ({The_Term_Array : Term_Handle) return Natural;
function Label (The_Term_Array Term_Handle; Index Nacural := 0)
recurn String;
function Index (The_Term_Array : Term_Handle:; Label : String := *7)
return Positive;
function In_Array
{The_Term Term_Id; The_Term_Array : Term_Id) return Boolean;
function Term {The_Term_Array Term_Id; Index pPositive) return Term_Id;
function Term (The_Term_Array : Term_Id; Label String) return Term_Id:
function Term {(The_Term_Array ! Term_Handle; Index : Positive)
recrurn Term_Handle:
function Term (The_Term_Array @ Term_Handle; Label : String)
return Term_Handle; '

-- Index operations.
procedure Add_Index {The_Term
function The_Index (The_Term :

Term_Handie: Index Set .Natural_32):
Term_Handle} return Term_Index:

-— If the Term_ID has not been *Connect”-ed, the Read_Address

-- function returns Null_Address.

function Read_Address (The_Term : Term_Handle) return System.Address;
function Prefix_Comp (The_Term Term_Id) return Component_Id;

-- Operations on Message 1D objects.
procedure Create_Symbols (The_Message

in out Message_Id; Parent scring);

—— Convert’s String argument must contain an Alphanumeric version
-- of the ID ('Robocics.SPDM.Arm(Z).IF_Packetl').

procedure Convert

furction
funccion
function
funccion

The_Message
The_Handle

Convert (String_Message

Convert {String Messa
Handle (Of_Message
Build (Comp Compone.

ORIGINAL PAGE 15
OF POOR QUALITY

(Sering_Message : String:

out Message_lId:
out Message_Handle):
String) return Message_ Id;
ge : String) return Message_Handle:
Message_Id) returmn Message_Handle:
nc_Id; Msg : Message_Id) return Message_Id;

=37

Image

_Me
~ Value 3

ssagje : Mess
r r

ing : Striry

rn vu

'z c
The_Ccmpcnent (The_Message : Message _Id) return Jompenenc
Full_Name [(The_Message : Messaze_IZ! recurn String:

9
- Tre_dName [(The_Message :@ Message_Handle, return 3tring:

I3

‘

- Size ‘The_Message : Message_Handle! recturn Natural;
- Jafaszcore The_Message : Message_Handle; return Boolean;

function Frefix_Tomp (The_Message : Message_Id) return Compcnent_Id:
-- Jrerations on Type_ID objects.
procedure Create_Sympols {The_Type : in out Type_Id; Parent : String):

-- Convert's 3String argument must contain an Alphanumeric version
-—- of the ID {“Robozics.Positicon_Vector”;.
procedure Convert {(3tring_Type : String:

The_Type : out Type_Id:

The_Handle : out Type_Handle);
function Converc {String_Tyre : String) return Type_Id:
function Convert (String_Type : String) return Type_Handle;
function Handle (Of_Type : Type_Id) return Type_Handle:
function Build {Comp : Component_Id: Typ : Type_Id) recurn Type_Id;
function Image (Of_Type : Type_Id) return String;
function Value (Jf_String : String) recturn Type_Id:

T ERRES

function The_Component {The_Type : Type_Id) return Component_Id;
function Full_Name (The_Type : Type_Id) return String:

function The_Name (The_Type : Type_l Handle) recuggistrlng,
function The_Tag The_TYﬁe Type Handle} return Type_Tag:
function Is_Subtype (The_Type : Type_Handle) return Boolean;
function String_Length (The_Type : Type_Handle) recturn Nacural;

function Size (The_Type : Type_Handle) return Natural;

i
|

d

-- The fcllowing functions are useful for Enum_Tag’'d Type_IDs; they
-- provi - aczess to the information related to Labels, ‘Pos-like

-- indexss, and representation values. A “Label” is a string that

-- stands for an enumeration literal. An *Index” is a numeral that
-- represents the position of a literal within the enumeration list
-- I{the kind of value returned by Enum_Type'’Pos(Literal}]. A *Value~
-- is the representation numeral supplied with an enumeration

-- represencation clause. Because Enum_Type’'Pos starts with zero (0)
-- the DIS uses zero as the index ro the first element of the

-- enumeration type_id; the label list array starts its index as zero
-- also. This contrasts with the indexes for labels of term, component
-- and malfunction identifier arrays, which start at one.

-- 0 Lab‘i returns a String value given an number which (1} is

-- used a8 an Index into a list of label strings, if no Value_List
- was supplied during Register_Type; or (2} is used as a Value

-— if a Value_List was supplied.

-- o Label_Index rsturns a ’'Pos-like Index for enum tag’d types.

-- o Label_Value returns a 'Pos-like Index if the Type_ID

- was registered without a Value_List parameter, or the appropriate
-- representation value id there is an associated Value_List.

-- o Value_Index returns a ‘Pos-like Index givern 1 Value.

-~ 0 Values returns a Value_List entity which is ndexed from zero.

- The enum type’s 'Pos value directly accesse: -ne corresponding

-- representation value. - 7= o= - S - : —
function Number_Of _Labels (The_Type : Type__Handle) recurn Nacural; =
function Label (The_Type : Type_Handle; Index : Natural} return String:

function Label_Index

H-38

C

SUncTion
fuancrion
funccion
function
funccion
function
function
funccion
function
function
function

. Lsw_Bound (The_Tyre : Type_Handle;

{The_Type : Tyre_Handle: lLarel : 3Cring, recurn Naturals
Laktel _Val:e

{The_Type : Tyre_Handle: lLazel. : 3tring; retur: Naczural;
Value_Index

{(The_Type : Type_Hand.e; Value : Natural' return Nazural:
vValues (The_Tyre : Tyrpe_Handle, return Value_List;

t.integer_32;:
High_Bound [The_Tyre : Type_Handle) ez .lnteger_32:
ow_Bound (The_Type : Type_ Handle} t.Integer_i6;
High_Bound (The_Type : Type_Handle) recurn 3e .Integer_l6;
Low_Bound (The_Type : Type_Handle] recurn Set.Integer_8;
High_Bound {(The_Type : Type_Handle! return Set.Incteger_8§;
Low_Bound (The_Type :, Type_Handle} return Set .Real_6;
High_Bound (The_Type : Tyre_Hardle) recturn Set .Real_6;
Low_Bound (The_Type : Type_Handle) return Set.Real_ 15;
High_Bound (The_Type : Type_Handle} return Set.Real_l15;
Low_Bound (The_Type : Type_Handle) return Character;
High_Bound (The_Type : Type_Handle) return Character;

ot

-- Operations on Malfunction_ID objects.

procedure Create_Symbols’

-~ Convert's String argument must contain an Alphanumeric version
-- of the ID (“Robotics.SPDM.Fail”).
procedure Convert (String Malf : String:

function
function
funcrion
function

funccion
function

function
funccion

function The_Name (The_Malf : Malfunction_ Handle) return scring:

(The_Malf : in out Malfuncrion_Id; Parent : String):

[N

The_Malf : out Malfunction_Id;
The_Handle : out Malfunction_Handle):

Convert (String Malf : String) recurn Malfunction_Id:
Convert (String Malf : String) return Malfunction Handle;

Handle (Of_Malf : Malfunction_Id) recurn Malfunction Handle;
Build (Comp : Component_Id; Malf : Malfunction_Id)

recurn Malfunction_Id:
Image (Of_Malf : Malfunction_Id) return string:

value (Of_sString : String) return Malfunction_Id;

The_Component (The_Malf : Malfunction_Id) return Component IQd;

Full_Name {The_Malf : Malfunction_Id) return string:

type Malf_Xind is (Simple_Malf, Options_Malf, Pl_Malf, P1_P2_Malf);

funccion

functien
function
s

=
func:LQg
function
function

function
function

function
function
funcction
function
function

funcetion

Kind (The_Malf : Malfunction_Handle) recurn Malf _Kind;

Options_Type (The_Malf : Malfun;tion_ﬂandle) return Type_Handle:;
Qpcions_)ddtel-
‘_,(Thﬂ_ﬂnlf . Malfunction_Handle) return System.Address;

7?1_!-.. (The_Malf : Malfunction_Handle) return String:

#1_low (The Malf : Malfuncecion_Handle) return Set.Real_15:
PL_High (The_Malf : Malfunction_Handle) return Set .Real _15;
Pl_Type (The_Malf :rMalﬁppc;ion_Handle) recurn Type_Handle:

Pl_Address (The_Malf : Malfunction_Handle) return System.Address;

P2_Nare [The_Malf : Malfunction_Handle) return String:

P2 _Low (The_Malf : Malfunction_Handle) return Set .Real _15;
P2_High (The_Malf : Malfunction_Handle] recurn Set .Real _15;
P2_Type (The_Malf : Malfunction_Handle) recurn Type_Handle;
P2_Address (The_Malf : Malfunction_Handle} return System.Address;

Active_ Address
(The_Malf : Malfunction_Handle) recurn System.Address;

L. -39 ORIGINAL PAGE

OF PMOR QUALITY

Id_Array

Teturn Boclean:
. Length :

dle, return Positive;

. Label ‘Tre_Mali_Array e; Index : Natural := 0}
TaTurn SLring:
funcoion Index (The_Malf Array : MalZunccion_Yandle; Zabel : String 1= *”:
recurn rFosiclive;
funcIion In_Array
Trhe_ Malf : Malfunction_Id; The_Malf_Array : Malfunction_id)
rezurn Boolean:;

"y

(The_Malf_ Array : Maifunction_Id:; Index : Positive)

recurn Malfunccion_Id:

function Malf (The Malf _Array : Malfuncrtion_Id; Label : Stcring)
recurn Malfunction_Id:

funccion Malf (The _Malf Array : Malfunction_Handle: Index : Positive)
recurn Malfunction_Handle;

function Malf {The Malf Array : Malfunction_Handle; Label : String)

recurn Malfunction_Handle:

CuncTion Mal

function Prel.x_Comp (The_Malf : Malfunction_Id) return Component_Id;
-- Connect facilities {Cynamic augmentation of the DIS)

-~ The DIS is augmenced with dynamic informacion at run time. This
-- includes such things as the addresses of data items that

-- are to be associated with identifiers and locations of models

-~ in the network.

-- This adds address information to the identifier. Connect_Term adds
-- an address to a single cerm registered with the DIS. However,
-- these Connects are also used for Term_Id arrays that map to an
-- Ada array. If Connect_All is True (default) and Term represents
-- an ID array, only the address of the first element in the Ada array
-- need be supplied. The rest of the addresses will be calculaced
-- by the DIS. This will only work if the Ada array is contiguous in
-- memory and the component addresses can be calculated using the
-- address of the first. Connect_All is ignored if the term supplied
-- does not represent an ID array. If it is False, even if the Term
-- ID supplied represents an ID array, only one address & term will be
-- connected by the routine.
procedure Connect_Term (Term : Term_Id:;

Address : System.Address:

Connect_All : Boolean := False);

-- An alternate version of Connect_Term uses the symbol map
-- string to derive the address. It works exactly like the straight
~-- address version, including its behavior for Term_ID arrays.
procedure Connect_Term (Term : Term_Id;
' Symbol : String:
Connect_All : Boolean :z False);

~-- Use thig routine when the Term_ID array maps to a set of Ada terms
-- that are not contiguous in memory in such a way that Connect_Term
-- can simply calculate all of the appropriate addresses using the
-- first one. The array of addresses must be the same length as the
-- previously registered taerm array.
procedure Connect_Term_Array

(Term_Array : Term_Id; Addresses : Add;gggzgfgay);

-- Connecting a malfunction means supplying the addresses for the
-- parameters associated with the malf. These are the addresses of:
-— 1} the Pl parameter,

dly

1140

ORIGINAL PAGE IS
OF POOR QUALITY

i

2} the P2 paramecer,
- 3) the 3iscreze oprions raramecer, and
4) :he.malfunc:ion actzive flag
__ 7se the version of Connec: Malfuncction call below which permits
-- ~re use of symbols. An address or symbeo. musz te supplied for
-— a.. the paramecers that apply Co a parcicu.ar ma.funccion. For
- example, if zhere is a Pl parameter but no P2 parameter associated
—— wi-h a ma.function, and a Connect call is made for that malfunctiorn,
__ -rere Tust te an address or sympbol for the first element in the
- array and 2 Null_Address and null symbol string for the second
-~ elemenz. In all -ases, an address or symbel is required for the
_~ active flag. Connect_Error is raised if these rules are violated.

type Malf_Addressable is (P1_Addr, P2_Addr, Options_Addr, Active_Addr};
type Malf_Addresses is array (Malf_Addressable] of System.Address:

- This procedure is obsolete. Phase it out and
-- use the version below instead.
procedure Connect_Malfunction
(The_Malf : Malfunccion_Id; Addresses : Malf_Addresses):

—— You can connect any malfunction parameter using a symbol or
-- using an address. If you supply a symbol for a particular
-- parameter, you may noC supply an address, and vice versa.
-- However, you may supply a symbol for one paramecer and an
-- address for a different parameter.
procedure Connect_Malfunction

{(The_Malf : Malfunction_Id;

Active_Symbol : String := **;

Pl_Symbol : String := **:

P2_Symbol : String := *7;

Options_Symbol : String := *°;

Active_Address : System.Address := Null_Address;

P1_Address : System.Address := Null_Address;

p2_Address : System.Address := Null_Address;

Cptions_Address : System.Address := Null_Address);

-— This call is not very useful; it doesn’t seem to save much
-- coding over the Connect_Malfunction call, is probably error-prone,
-— and doesn't have the advantage of checking against data in the
-- symbol table. It may be phased out in the future.
procedure Connect_Malf_Array
(The_Malf_Array : Malfunction_Id;
Active_Addresses : Address_Array:
Options_Addresses : Address_Array := Null_Address_Array:
Pl1_Addresses : Address_Array := Null Address_Array:
P2_Addresses : Address_Array := Null_Address_Array):

-- Adds location information (node and process ID)
-- to the Component identifier.
procedurs Commect_Prefix (To_Comp : Component_Id; Prefix_Name : String):

-- Constants and magic numbers.

-- The maximum String length for String_Tag‘d Type_IDs.
Max_String : conscant :=z 40;

-— The maximum number of component levels.
Max_Levels : constant := 7;

-- The maximum number of identifiers that can be registered
-- per level. -
Max_Components : constant := 255;

QRIQINAL PAGE 1S ll—41

. OF POOR QUALITY

T LT

Max_Terms : Tonstant = 63335

Max_Types : <onstant :z ;

Max_Messages : <onstanc = 2%5;

Max_Malfunctisons : constant := 253;

-- The DI3 idenrifier 3zring length censcancs,

-- Zazh OIS8 ldentifier can be represenced in Twc ways: as a

g or as a set of integer values. The Register_ functions
ide the integer-set version %o the registering applicacion.
identifer tyre has a Convert function which zakes a String

e and preduces an idencifier type value (the integer-set).
Full _Name function takes an idencifier value and produces a

-- String value. Examples of identifier string formats are:

3

n'o o
[]
= QO
2o

£

[
| (
-1 <
b

®

-- comp_id.comp_id.term_id (simplest form)

~-- comp_id.comp_id{(3) .cype_id {indexed by 1..Length)

-- comp_id.comp_id.term_id(Left_Engine) {indexed, user-def labels)

-- comp_id.comp_1d(2) .comp_id{NW) .cerm_id ‘mix 'n° match ‘em)

-- comp_id.comp_id.comp_id....msg_id {up to Max_Level Component_IDs)

-- Each Component _ID in the string can be up to Max_Comp_Name
-- characters long. Each of the other identifiers can be up to
-- Max_ID_Name characters long. Subscripts can be as long as

== Max_label_Name characters.

Max_Label _Name : constant := 30; -- max length for label names
-- this includes enumeration labels, and subscript labels for
-- identifier arrays (component, term, and malfunction types).

Max_Comp_Name : constant := 20; -- max length for component id names

Max_Id_Name : constant := 40: -- max length for other id names
Max_Malf_ Name : constant := Max_Id_Name - 2; .

-- Register_Malfunction tacks on a ‘_x’ suffix to malf-related terms
Max_Subtype_Name : constant := Max_Id_Name - 3;

-- Register_Subtype tacks on a ’'_xx’ suffix to the base type name

Max_Full _Name : -~-nstant :=
(Max_Levels) {Max_Comp_Name + 1) + [Max_Label Name + 2)) -«
Max_Id_Name + (Max_Label Name + 2);
-~ Max length for fully qualified identifier names.
-- Leave enough room for max levels of components. Each
-- component can be Max_Comp_Name + 1 (for the period) plus
-- the Max_Label Name + 2 (for the parentheses). And then
-- Max_ID_Name chars for the lowest level of identifier plus
-- Max_Label_Name + 2.

-- Packq@iigiviqacg is used by tools that need to traverse the
-- memory-resident DIS tree.

package Navigate is

-- Get the head DIS handle.
function Head recturn Component_Handle:;

-~ Jet the handles for the child lists.
function Comp_Children (Comp : Component_Handle)
return Component_Handle;
function Type_Children (Comp : Component_Handle) return Type_Handle: .
function Term_Children {Comp : Component_Handle) return Term_Handle;
function Msg_Children (Comp : Component_Handle) recurn Message_Handle;
function Malf_Children (Comp : Component_Handle)
recurn Malfunction_Handle;

11—42 , QﬁfGiNAL PAGE Is
OF POOR QUALITY

-~ et the "next” handle in list.

\

*Next® 100Kks at only the Ilrs:s

-- nandle of an ID array; “Nextl” locks at all nardles.

unccion Next (Comp : Component_dandlie) recurn Zomponent_Handle;
function Nexz. {(Comp : Compornent_Handle) return Comperent _Handle:
Function Next (Typ : Type_Handle) return Type_Handle:

‘unczion Next (Term : Term_Handie) return Term_Handle:

funcoion Nextl {Term : Term_Handle) recturn Term_Handle;

‘unccion Next !Msg : Message_Handle) return Message_Handle;

finecion Nex:t ‘Malf : Maifunction_Handle) return Malfuncrion_Handle:;

funczion Nexcl (Malf : Malfunction_Handle) rerurn Malfunction_Handle:

-- Don’'t try to go past the end
-- Null_Error. Compare handles
-- to the Null_<ID_Type>_Handle
-- of the DIS package spec. '

end Navigate;

of a list, or you'll get the
returned from Navigate’s routines
conscants declared ac the top

private
-- nidden from sight
end Dis;
-- Abstract: The DIS is used to create a set of logical names for

off-line and inter-model data references. The DIS

internal data-base can be loaded in
through the elaboration of packages
or by loading a file which contains

one of two ways:
defining identifiers,
the previocusly-

i

- scored state of the DIS. The first method is for

-— real-time models, the second is for off-line tools.

- Models connect their data variables to the DIS logical
-- names with the “Connect” routines. -

-- Warnings: Be sure to follow all the rules for DIS °_Defs” package

- creation. The DIS assigns identifier values in a strict

- order indepentent of the elaboration order of the _Defs

- packages; this scheme only works if the rules are followed.

ORIGINAL PAGE 1
OF POOR QUALITY 11-43

8.5. SSTF_Defs =

wizh Dis, Std_Eng_Types, Std_Zng_Unicts: .
cackage Sstf _Defs is

package Set renames std_Eng_Tyres:
-- Tre top-level *Component_IDs”

Robotics : constant Dis.Component_Id :=
Dis.Register_Component (Dis.Null_Component, “Robotics”) :
Environment : constant Dis.Componenc_Id :=
Dis.Register_Component (Dis.Null Component, “Environment<):
Usad : constant Dis.Component_Id := Dis.Register_Component
{Dis.Null_Component, “Distributed”);
Usav : constant Dis.Component_Id :=
Dis.Register_Component (Dis.Null_Component, *USAV*};
Obcs : constant Dis.Component_Id :=
Dis.Register_Component (Dis.Null Component, “l3C857);
visual : constant Dis.Component_Id :=
Dis.Register_Component (Dis.Null_Component, *Visual®};
Nts : constant Dis.Component_Id :=
Dis.Register_Component (Dis.Null_Component, *NTS"};
Rts : constant Dis.Component_Id :=
Dis.Register_Component (Dis.Null_Component, *RTS?): 7
Ios : constant Dis.Component_Id := -
Dis.Register_Component {Dis.Null Component, *IOS*): *
Ops_Tools : constant Dis.Componenc_Id := - -
Dis.Register_Component {Dis.Null_Component, “Ops_Tocls®);
Sac : constant Dis.Component_Id := '
Dis.Register_Component (Dis.Null_Component, “SAC®}:

-— The top-level *Type_IDs* (and type tags renamed from DIS).

package Bf is new Dis.Enum_Functions (Boolean):
Boolean : constant Dis.Type_Id :=
Dis “2gister_Type (Dis.Null_Component, °Boolean”, D ‘~am_Tag,
Labels => Bf.Labels,
Size => Bf.Size):

Character : constanc Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Componenc, “Character”, Dis.Character_Tag,
Low_Bound => {1 => Ascii.Nul}, -- ascii O
High_Bound => (1 => Ascii.Del)); -- ascii 127

Graphic_Character : constant Dis.Type_Id :=
Dis.Rigister_Subcype (Dis.Null Component,
— o Base => Character,
Name => *Graphic_Character”
Low_Bound => ' *, -- blank
High_Bound => ‘~’); -- tilde

-- Logical types for the Fortran guys: use the Boolean labels.

Logical_1 : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, *Logical_1”, Dis.Enum_Tag,
Labels => Bf.Lacels,
Size => 8);
Logical_2 : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, ®*Logical_2<, Dis.Enum_Tag,
Labels => Bf.lLabels,
Size => 16);
Logical_4 : constant Dis.Type_Id :=

11-44

E

Jis.Reglscter_Type (Dis.Null_lompornent.
Labels => Zf.latels,

Size => 32}
.- 3-andard Engireering Tyres

Inceger_3 : constant Dis.Type_Id :=
Cis.Regiszer_Tyre !Dis.Null_Component,

Nacurali_% : zcnstanc Dis.Type_Id :=
Dis.Regiscer_Type !Dis.Null_Component,
Low_Bcund => *07);

Positive_8 : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null _Componentc,
Low_Bound => *17*};

Integer_l6 : constant Dis.Type_Id :=
Dis.Register Type (Dis.Null Component,

Natural_16 : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null Component,
Low_Bound => “07);

Positive_l6 : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
Low_Bound => *17);

Integer_32 : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
Nactural_32 : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Componenc,
Low_Bound => *07);
Positive_32 : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Componenc,
Low_Bound => “17);

Real_6 : constant Dis.Type_Id :=
Dis.Register _Type (Dis.Null_Component,

Real_l15 : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,

-- other types from SET

package Af is new Dis.Enum_Functions (Set
Active_Inactive : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
Labels => Af.Labels,

Size => Af.Size);

“Logizal,

4%, Dis.Enum_Tag,

*Inceger_8”", Dis.Byte_Tag]:

“Nacural_8", Dis.Byte_Tag,
“Positive_B*, Dis.Byte_Tag,
*Inceger_16", Dis.Short_Tag);
*Natcural_l67, Dis.Short_Tag,
*Positive_16%, Dis.Short_Tagq,
Integer_32, Dis.Integer_Tag):
*Natural_327, Dis.Integer_Tagq,
*positive_327, Dis.Integer_Tag,

Real_6, Dis.Float_Tag);

*Real_157, Dis.Double_Tag):

.Active_Inactive);

*Active_Inactive®, Dis.Enum_Tag,

package Ast is new Dis.Bnum_Functions (Set .Actual_Sensed):

Actual_Sensed : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null Component,

*Actual_Sensed”, Dis.Enum_Tag,

- Labels => Ast.Labels,

Size => Ast.Size):

package Aut is new Dis.Enum_Functions {Set .Attached_Unattached):

Atzached_Unattached : constant Dis.Type_Id

Dis.Register_Type (Dis.Null_Component,

sAtvached_Unattached”, Dis.Enum_Tag,
Labels => Aut.Labels,

Size => Aut.Size):

package Avf is new Dis.Enum_Functions (Set.Available_Unavailable):
Availabile_Unavailable : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Componenc,

*Availabile_Unavailable”’, Dis.Enum_Tag,

11-45 ORIGINAL PAGE 18
OF ®DOR QUELITY

Larels => Avi. Laktel's,
Size =z> Avi.3ize};

cacxkage Bzf 1s new Dis.Enum_Functions [Ser.zusy_Not_Busy):
Busy_Noz _Busy : constant Dis.Type_Id :=
Cis.Register_Type (Dis.Null _Component, "Busy_Not_3usy”’, Dis.Enum_Tag,
Latels => Bzf.lLabels,
Size => Bz* 3ize}:;
package ncI 1s new Dis.Enum_Funccions (Sec.llosed_Not_Closed);
C.osed_Not_Closed : constant Dis.Type_Id :=
Dis.Register Tyre (Dis.Null_Component, *Closed_Not_Closed®, Dis.Enum_Tag,
Labels => Cnct.labels,
Size => Cnct.Size):

package Unt is new Dis.Enum_Functions (Set.Connected_Unconnected);
Conrecced_Unconnected : constant Dis.Type_Id :=
C.s.Register_Type (Dis.Null_Component,
Connec- % _Unconnected, Dis.Enum_Tag,

Labels at.Labels,
Size = .Size);
package Cf is new Dis.Enum_F. ..:ions (Set.Complece_Incomplete);

Complete_Incomplete : constant Dis.Type_Id :=
Dis.Register_Type
{(Dis.Null_Component, *Complete_Incomplete<®, Dis.Enum_Tag,
Labels => Cf.lLabels,
Size =>»> Cf.Size);

‘package Ef is new Dis.Enum_Functions (Set.Empty_Not_Empty);
Empty_Not_Empty : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, “Empty_Not_ _Empty”®, Dis.Enum_Tag,
Labels => Ef.Labels,
Size => Ef.Size};

package Ent is new Dis.Enum_Functions {(Set.Enabled_Disabled);
Enabled_Disabled : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, *Enabled_Disabled®, Dis.Enum_Tag,
Labels => Ent.Labels,
Size => Ent.Size);

package Gnf is new Dis.Enum_Functions {[Set.Go_No_Go):
Go_No_Go : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, *Go_No_Go*, Dis.Enum_Tag,
Labels => Gnf.Labels,
Size => Gnf.Size);

packagnrgifiq new Dis.EBnum_Punctions (Set.In_Tune_Not_In_Tune):
In_Tune Mt _IA_Tund : conscant Dis.Type_Id :=
Dis.Régister_Type
(Dis.Mull_Component, “In_Tune_Not_In_Tune”, Dis.Enum_Tag,
Labels => Tf.Labels,
Size => Tf.Size};

package Iot is new Dis.Enum_Functions (Set.Input_Qutput}:
Input_Qutput : conscanc Dis.Type_Id :=
Dis.Regiscer_Type (Dis.Null_Component, “Input_Output”, Dis.Enum_Tag,
Labels z=z> Iot.Labels,
Size => Iot.Size);

package Int is new Dis.Enum_Functions (Set.los_Nominal):;

Ios_Nominal : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, *Ios_Nominal®, Dis.Enum_Tag,

li-46

ETAREL] neigf

d

ORIGINAL PAGE IS
OF POCR QUALITY

cacels => LnOc..are.s,

; 3ize =z> Int.Sizel;

foid
(9]
LA 1]

i

- i

O

rackage snf is new 2is.EZnum_FuncLLons (Se
~= 5ff : constant Cis.Type_Id :=

‘n

Ti1s.Register_Tyre Dis.Null_Comgperent, *on_Cff*, Dis.Znum_Tag,
rapels => Cnf.Labels,

Size => Oni.Size}:

pacxage pf 1s rew ois.Enum_Funccions rSet .Open_Clecsed)
Zpen_Cl.osed : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, *Open_Closed”, Cis.Enum_Tag,
Labels => Opf.labels,
Size => Cpf.Size):

package Ont is new Dis.Enum_Functions {Set .Open_Not_Open);
Open_Not_Open : constant Dis.Type_Id :=
Dis.Register_Type [Dis.Null_Component, «Open_Not _Open”, Dis.Enum_Tag,
Labels => Ont.Labels, '
Size => Ont.Size);

package Ovt is new Dis.Enum_Functions {Set .Override_Not _Override):
Override_Not_Override : constant Dis.Type_Id :=
Dis.Regiscter_Type (Dis.Null_Component,
~Override_Not_Override”, Dis.Enum_Tag,
tabels => Ovt.labels,
Size => Ovt.Size);

package Pdf is new Dis.Enum_Functions (Sec.Pendinq_Not_Pendinq);
Pending_Not_Pending : constant Dis.Type._Id :=
Dis.Register_Type (Dis.Null_Component,
'Pgndinq_Not_Pendinq'. Dis.Enum_Tag,
tabels => Pdf.Labels,
Size => Pdf.Size):

package Pf is new Dis.Enum_Functions {Set .Present_Absent);
Present _Absent : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, *present_Absent”, Dis.Enum_Tag,
Labels => Pf.Labels,
Size => Pf.Size};

package Rst is new Dis.Enum_PFunctions (Set .Reset _Not _Reset) ;
Reset_Not_Resert : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, *Reset_Not_Re 2t”, Dis.Enum_Tag,
Labels => Rst.lLabels,
Size => Rst.Size);

package Rf is new Dis.Enum_Functions {Set.Right_Wrong):
Right _Wrdng : constant Dis.Type_Id :=
Dis . Regiater_Tybe (Dis.Null_Component, *Right _Wrong”, Dis.Enum_Tag,
Labels => Rf.lLabels,
Size => Rf.Size):

package Sbt is new Dis.Enum_Functions (Set .Scale_Bias);
Scale _Bias : constant Dis.Type_Id :=
Dis.Register_Type {Dis.Null_Component, *Scale_Bias”, Dis.Enum_Tag,
Labels =» Sbt.Labels,
Size => Sbt.Size});

package Syt is new Dis.Enum_Functions (Set .Sync_Not_Sync):
Sync_Not_Sync : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, *Sync_Not_Sync*, Dis.Enum_Tag,
Labels => Syt.Labels,
Size => Syt.Size):

Lo li-47 ORENAL PATE 15
pos S ' OF SR QUALITY

fatkaje Uit 1S new Tisg.Enum_Funcilins [Set.lnl:scked_lLeocked!
Jniocked_lLocked : constant Dis.Type_Id :=
Dis.Register_Type (Zis.Null_Compcnenc, "Uniscked_lLocked”, Jis.Znum_Tag,

[Ea Y

Latels => Ulz.latels,

Size => Jlt.3ize}:;
-- 3tring tytes

Assets : constant Jis.Tyre_Id :=
Dls.Regiszer_Tyre
(Dis.Null_Componenz, *Assets”, Dis.String_Tag, Size => 12);

Ncdes : constant Dis.Type_Id :=
Dis.Register_Type
{Dis.Null _Component, “Nodes”, Dis.String_Tag, Size => 12);

Sessions : constant Dis.Type_Id :=
Dis.Register_Type
(Dis.Null_Component, “*Sessions”, Dis.String_Tag, Size => 12);

-- Standard Engineering Units

-- Mostly consists of “renames® of earlier Type_IDs. Note that the
-- string displayed for such renamed entities is the name given for
-- the original type idencifier, which is not the same as the Ada
-- name below.

-- Time cypes

Seconds : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, ¢Seconds”, Dis.Float_Tag): G
Microseconds : constant Dis.Type_Id :=
Dis.Register _Type (Dis.Null_Component, *Microseconds”, Dis.Float_Tagqg):
Milliseconds : constant Dis.Type_Id
Dis.Register Type (Dis.Null_Component, “Milliseconds”, Dis.Floac_Tag):
Minutes : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, *Minutes~”, Dis.Float_Tag);
Hours : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, *Hours®, Dis.Float_Tag):
Days : constant Dis.Type_Id :=
Dis.Register Type (Dis.Null_Component, “Days®, Dis.Float_Tag):
Days _Dp : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, <Days_DP*, Dis.Double_Tag};

- Physical types (are you the ... ?)

Meters : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, "Meters”, Dis.Float_Tag):
Mecers Dp : constamt Dis.Type_Id :=
Dis.Register Type (Dis.Null Component, “Meters_DP<, Dis.Double_Tag);
Square_Maters : constanc Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, *Square_Meters”, Dis.Floact_Tag):
Cubic_Meters : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, *Cubic_Meters®, Dis.Float_Tag}:
Meters_Per_Second : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
“Mecters_Per_Second”, Dis.Float_Tag):
Meters_Per_Second Dp : constanc Dis.Type_Id :=z
Dis.Register_Type (Dis.Null_Component,
“Mecers_Per_Second_DP®, Dis.Double_Tag): =
Mecers_Per_Second_Squared : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Componenc,
“Meters_Per_Second_Squared®, Dis.Float_Tag):

(

11-48 ORIGINAL PAGE IS
OF POOR QUALITY

ter_3eccnd_3guared_Tp : constant Cis.Tyre_IZ =
.Register_Type :Dis.Nuil_lompcnenc,

Mecers_rer_3eccrnd_3Jquared_DTF, Dis.louble_Tagq!:

?
Jecicrocal _Meters : censcant Dis.Type 14 ;=

Tis.Regiscer_Tyve [Dis.Nuli_Comporent,
"Reciprocal _Mez=ars®, Dis.Flca:i_Tag):

Kil:grams : ccostant Dis.Type_ Id :=
Cis.Regiszer_Tyre (Tis.Null _Comgeonent, *“Kilograms”, Dis.Flcat_Tag):
Ki.ograms_Xeivin : Constant Dis.Tyre_Id :=
Cis.Register_Type (Dis.Null_Componenc,
*Kilograms_Kelvin~”, Dis.Float_Tag):
Kilngrams_Square_MeTer : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Componenc,
*Kilograms_Square_Meter”, Dis.Float_Tag):
Kilograms_Per_Cubic_Meter : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Componenc,
*Kilograms_Per_Cubic_Meter®, Dis.Float_Tagq):
Kilograms_Per_Cubic_Merer_Dp : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
Kilograms_Per _Cubic_Meter DP, Dis.Double_Tag);
Cubic_Meters_Per_Kilogram : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
*Cubic_Meters_Per_Kilogram®, Dis.Float_Taq):

Joules : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, ®Joules”, Dis.Floac_Tag};
Joulas_Per_Kelvin : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
*Joules_Per_Kelvin”, Dis.Float_Tag):
Joules_Per_Kilogram Kelvin : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
*Joules_Per_Kilogram_Kelvin”, Dis.Float_Tag):

Moles : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, “Moles”, Dis.Flcatc_Tag):
Moles_Per_Cubic_Meter : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
*Moles_Per_Cubic_Metrer”, Dis.Flcat_Tag);

Newtons : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, “Newtons”, Dis.Float_Tag):
Newtons_Dp : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, ®Newtons DP<, Dis.Double_Tag):
Newton_Meters : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, "Newton_Meters”, Dis.Float _Tag):
Newton_Meters_Dp : constant Dis.Type_Id := -
Dis.Register_Type (Dis.Null Component,
= _ . *Newton_Meters_DP*, Dis.Double_Tag);
Newton_§iquare_Meter : conscant Dis.Type_Id :=
Diiglibittor_?ype (Dis.Null_Componenc,
*Newtons_Square_Meter”, Dis.Float_Tag):
Newtons_Per_Meter : constant Dis.Tyre_Id :=
Dis.Register_Type (Dis.Null_Component,
*Newtons_Per_Meter?, Dis.Float_Tag}:

Pascals : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, *Pascals”, Dis.Float_Tag):
Pascals_Per_Second : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
*pascals_Per_Second”, Dis.Float_Tag):

Degrees : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, *Degrees”, Dis.Float_Tag):

{1-49

ORIGINAL PAGE 18
OF POOR QUALITY

Cegrees Jp : constant Jis.Tyre_Id :=
Dis.Register_Tyre (Dis.Null_Clompcrent, “"legrees_2F", Dis.loukle_Tag):
Cegrees_Per_Second : constant Dis.Tyre_Id :=
Cis.Register_Typre !Dis.Null_Ilompcrenc,
*Zegrees_Fer_Sec:ind®, Dis.rloatc_Tag):
raes_Per_Secznd_Cp : consIant Dis.Type_Id :=
Cis.Register_Tyre (Zis.Null_Compeornenc,
*Cegrees_Per_Second TP, Dis.Double_Taqgl:
r eccnd_3quared : constant 2is.Type_Id :=
Cis.Register_Tyre [Zis ill_Component,
“Ce . “ees_Per_Second_Squared”, Dis.Float_Taqg):;
Degrees_Per_Second_Squared_Dp : constant Pis.Type_Id :-=
Cis.Register_Type (Dis.Null_Component,
“Degrees_Per_Second_Squared _DP~, Dis.Double_Tagq):;
Radians : constant Dis.Type_Id :=
Dis.Register _Type (Dis.Null_Component, "Radians®, Dis.Float_Tag);:
Radians_Dp : constanr 2is.Type_Id :=
Lis.Register Type .Dis.Null_Componenc, °“Radians_DP", Dis.Double_Tag);
Radians_Per_Second : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Comporentc,
“Radians_Per_Seccond?, Dis.Float_Tag):;
Radians_Per_Second _Dp : constant Dis.Type_Id :=
Dis.Register_Type (Dis.».il1_Componenc,
Raz_ans_Per_Second_DP, Dis.Double_Tag):
Radians_Per_Second_Squared : constanc Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
"Radians_Per_Second_Squared®, Dis.Floatc_Tag):
Radians_Per_Second_Squared Dp : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Componenc,
Radians_Per_Second_Squared_DP, Dis.Double_Tag);
Steradians : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, °*Steradians®, Dis.Float_Tag):
Scteradians_Per_Second : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
*Steradians_Per_Second”, Dis.Float_Tag};
Steradians_Per_Second_Squared : constant Dis.Type_Id :=
Dis.Regiscer_Type (Dis.Null_Component,
“Steradians_Per_Sec~-? Squared”, Dis.Flcat_Tag):

Watcs : constant Dis.Tyv:-_ 13 :=

Dis.Register_Type (T - .Null_Componentc, - :tts”, Dis.Float_Tagqg):
Kileowatts : constantc Do T pe_Id :=

Dis.Register_Type (C_ “ull_Component, “Kilowatts”, Dis.Float _Tag):
Watts_Per_Square_Meter ‘ynstant Dis.Type_Id :=

Dis.Register_Type (C.s.Null_Component,
*Watts_Per_Square_Meter”, Dis.Float_Tag):
Watts_Per_Steradian : constanc Dis.Type_Id :=
Dis.Rigiecer_Type (Dis.Null_Component,
hroiny *Watts_Per_Steradian”, Dis.Float_Tagq):
Watts_Per_BQuare_Meter_Steradian : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Componenc,
*Watts_Per_Square_Meter_Steradian”, Dis.Float_Tag):

-- English types

Inches : constant Dis.Tyre_Id :=z

Dis.Register_Type (D:. .'ull_Component, “Inches”, Dis.Float_Tag):
Inches _Dp : constant Dis. .pe_Id :=

Dis.Register_Type (Dis.Null_Component, *Inches_DP*, Dis.Double_Tag):
Square_Inches : constant Dis.Type_Id := T

Dis.Register_Type (Dis.Null_Component, *Square_Inches”, Dis.Floac_Tag):
Cubic_Inches : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, *Cubic_Inches”, Dis.Float_Tag):

11-80

dl
|

i !

viwd

(

|GINAL PAGE 18
g: POOR QUAUW

(

Feer : consztant Dis.Tyre_Id :=
Dis.Register Type 'Dis.Nuil_Compcnent, "Feez”, Dis.Floac_Tag!:
Feetn _Tp : constant Dis.Tyre_Id := .
Ois.Register T 'Dis.Null_Componenc, “Feet OJF”, Dis.3ouble_Tagl:
3zuare_FeeCt : constanc Dis.Tyre_Id :=
Sis.egister_Typre [Dis.Null_Comporenc, "3quare_Feet”, Dis.Float_Tag):
Sguare_Feet _Dp : constant Cis.Type_Id :=
nig.Regiscer_Type [Dis.Null_Compernent, *Square_reet _DP*, Dis.Doukle_Tag):
Cubic_Feet : constant Cis.Tyre_Id :=
Dis.Regiscter _Tyre {(Dis.Null _Compornent, *Cubic_Feet”, Dis.Flocac_Tag}:
Cukbic_Feet_Dp : constant Dis.Type_Id :=
Dis.Register_Type 'Dis.Null_Component, “Cubic_Feet_DP”, Dis.Double_Tag):
Feer_Per_Second : constant Dis.Type_Id :=
Dis.Register_Type [(Dis.Null_Component, *Feet_Per_Second®, Dis.Float_Tag)};:
Feet_Per_Second_Dp : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null _Component,
Feet_Per_Second_DP, Dis.Double_Tag}:
Feet _Per_Second_Squared : constant Dis.Type_Id :=
Dis.Register_Type (Dis.ﬁﬁll_cbhpbnen:, N)
*Feet_Per_Second_Squared®, Dis.Float_Tag);
Feet_Per_Second_Squared_Dp : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
"Feet_Per_Second_Squared_DP®, Dis.Double_Tag):
Miles : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, “Miles”, Dis.Float _Tag);
Miles_Per_Hour : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, *Miles_Per_Hour”?, Dis.Float_Tag):
Nautical_Miles : constant Dis.Type_Ild :=
Dis.Register_Type (Dis.Null_Component, ¢Nautical Miles<, Dis.Float_Tagj;
Nautical _Miles_Per_Hour : constant Dis.Type_lId :=
Dis.Register_Type (Dis.Null_Component,
“Nautical_Miles_Per_Hour”, Dis.Float_Tag):

Gallons : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, *Gallons”, Dis.Float_Tag):
Gallons_Per_Second : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
*Gallons_Per_Second”, Dis.Float_Tag);
Quarts : constant Dis.Type_ Id := :
Dis.Register Type (Dis.Null_Component, *Quarts”, Dis.Float_Tag):

pPounds_Mass : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null Component, *pounds_Mass”, Dis.Floac_Tag):;
Pounds_Mass_Per_Second : constant Dis.Type_Id :=

Dis.Register_Type {Dis.Null_Component,

*Pounds_Mass_Per_Second”, Dis.Ploat_Tag):

Slugs : ceonstant Dis.Type_Id :=

Dis.Regisger_Type (Dis.Null Component, “Slugs<, Dis.Floatr_Tag):;
Slugs_Dp 3 chnstant Dis.Type_Id :=

Dis. N ater_Type (Dis.Null_Component, #Slugs_DP*®, Dis.Double_Tag};
Tons : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Componenc, “Tons?, Dis.Float_Tag)}:

Pounds_Mass_Per_Cubic_Inch : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null Component,
*Pounds_Mass_Per_Cubic_Inch?, Dis.Float_Tag});
Pounds_Mass_Per_Cubic_Poot : constant Dis.Type_ld :=
Dis.Register_Type (Dis.Null_Component,
*pounds_Mass_Per_Cubic_Foot”, Dis.Float_Taqg):
Pounds_Mass_Per_Cubic_Foot_Dp : constant Dis.Type_Id :=
Dis.Register_Type ({(Dis.Null_Component, .
pounds_Mass_Per_Cubic_Foot _DP, Dis.Double_Tag}:

I-51
ORIGINAL PAGE IS

OF POOR QUALITY

I e

founds_Mass_3guare_Tsoc Tyre_l3 =
Dis.Register_Tyre [Dis.Nuli._I:mponenc,
*Pounds_Mass_Sguare_Fooo”, 2is.Flsat_Tag:
3lugs_Square_root : cconstant Dis.Type_Id =
b

is.Register_Type (Dis.Nu.ii_Ccmponent,
*3iugs_Square_Fcot”, Dis.Flzac_Tag!;
2p : constant Dis.Type_Id :=
Tyre (Cis.Null_Ccmpornent,
"Slugs_Square_Foor_3JP*, Dis.Double_Tag):

Pounds_Forze : constant Dis.Type_Id :=
Dis.Register_Tyre (Dis.Null_Component, *Founds_Feorce”, Dis.Floatc_Tag}):
Pounds_Forze_Dp : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
“Pounds_Force_DP*, Dis.Double_Tag):

Brtus : constant Dis.Type_Id :=
Dis.Regiscter_Type (Dis.Null_Component, <“BTUs*, Dis.Float_Tag);
Btus_Per_Seccrd : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, *BTUs_Per_Second”, Dis.Floac_Tag}:
Btus_Per_Square_Foot : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
*BTUs_Per_Square_Foot”, Dis.Float_Tag):
Brus_Per_Square_Foot _Dp : constant Dis.Type_Id :=-
Dis.Register_Type (Dis.Null_Componenc,
*BTUs_Per_Square_Foor_DP”, Dis.Double_Tag)}:
Brus_Per_Square_Foot_Per_Second : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
*BTUs_Per_Square_Foot _Per_Second?’, Dis.Float_Tag)};
Brus_Per_Square_Foot_Per_Second_Dp : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, T
*BTUs_Per_Square_Foot_Per_Second_Dp”, Dis.Double_Tag}:

Calories : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, “Calories”, Dis.Float_Tag):
Calories_Per_3Second : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
*Calories_Per_Second”?, Dis.Float_Tag):
Foot_Pounds_Force : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
*Foot_Pounds_Force”, Dis.Float_Tag);
Foot_Pounds_Torce _Dp : constant Dis.Type_Id ::=
Dis.Register_Type (Dis.Null_Component,
"Foot _Pounds_Force_DP?, Dis.Double_Tag):
Foot_Pounds_Force_Seconds : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
*Poot _Pounds_Force_Seconds”, Dis.Float_Tag):
Foot _Pounds_Porce_Seconds _Dp : constant Dis.Type_ld :=
Dis.Register_Type (Dis.Null_Component,
L *Poot_Pourds_Force_Seconds_DP7, Dis.Double_Tag):
Horsepower s constant Dis.Type_ 7% :=
Dis.Register_Type (Dis.Null_<T:-—ponenc, “Horsepower”, Dis.Float_Tag):
Atmosphereg : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, *Atmospheres”®, Dis.Float_Tag}:;
Atmospheres_Per_Second : constant Dis.Type_Id :=
Dis.Register_Type {(Dis.Null Component,
*Atmospheres_Per_Second”, Dis.Float_Tag);
Inches_Mercury : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, *Inches_Mercury®, Dis.PFloat_Tag):
Psi : constant Dis.Type_Id := Dis.Register_Type . .
(Dis.Null_Component, “PSI*, Dis.Float_Tag):;
Pounds_Force_Per_Square_Foot : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,

1i-52

C

"oounds_rForce_rer_3guare_Foci”, C.s.Fisat_Tag,;

g

Zis.Reglistgr_Type Dis.Nuil _Comperent,

ounds_?crce_?e:_Squa:e_Foot_Dp t Conscantc

Cis.TyE

e_ld HE

»Tgounds_Force_Per_33guare_Foot TP, Cis.Couble_Tag}:

- Temreratire types

Ke_win : constant Dis.Type_Id :=
Z.s.Regiszer_Tyre 'Dis.Null_Compcnent,
Selsius : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component,
Farnrerneiz : constant Dis.Type_Id :=

Dis.Register_Type {(Dis.Null_Component,
Rankine : constant Dis.Type_Id :=

Dis.Register_Type {Dis.Null_Component,

-- Luminance cypes

Candelas : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,

"Kelvin”

, Dis.Float_Tag):

“Celsius”, Dis.Float_Tag):

*Fahrenheic”, Dis.Floac_Tag}:

*Rankine”, Dis.Flcat_Tagqg):

*Candela

Candelas_Per_Mecter_Squared : constant Dis.Type_Id

Dis.Register_Type (Dis.Null_Component,

*Candelas_Per_Meter_!

Lumens : constant Dis.Type_Id :=
Dis.Regiscer_Type (Dis.Null_Component,

*Lumens”

Lux : constant Cis.Type_Id := Dis.Register_Type

(Dis.Null_Component, “Lux”, Dis.Float_Tag):;

Radiance : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
Radiant_Incensity : constant Dis.Type_Id
Dis.Register_Type (Dis.Null_Component,
*Radiant_Incensity”,

-— Electromagnetic types

Amps : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null Component,

*Radianc

s*, Dis.Floatr_Tag):

Squared”, Dis.Float_Tag):

, Dis.Float_Tag):

e”, Dis.Float_Tag):

Dis.Float _Tag):;

Amps,

Amps_Per_Square_Meter : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component,

Dis.Float_Tag):

*Amps_Per_Square_Meter”, Dis.Float_Tag}:

Amps_Per _Meter : constant Dis.Type_Id :=
Dis.Register_Type {Dis.Null_Component,
Columbs : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
Frequency : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_ Component,
Frequency_Pp : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null Componenc,
Faradg :_congtant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Componenc,
Henries : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_ Component,
Hercz : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
Impedeance : constant Dis.Type_Id :=
Dis.Regiscer_Type (Dis.Null_Component,
Ohms : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
Siemens : constant Dis.Type_Id :=
Dis.Register_Type {Dis.Null_Component,
Tesla : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component,
Weber : constant Dis.Type_Id :=

*Amps_Per _Meter”,

*Columbs®, Dis.Float_Tag):

*Frequency”, Dis.Float_Tag):

Frequency_DP,

*Farads”

, Dis.Float_Tag}:

*Henries?, Dis.Float_Tag};

"Hertz”,

Dis.Float_Tag)}:

*Impedeance”, Dis.Float_Tag);

*Ohms“,

Dis.Float_Tag):

*seimens?, Dis.Float_Tag):

*Tesla”,

1I-83

Dis.Float_Tag)

et o

Dis.Float_Tag):

Dis.Double_Tag):

ORIGINAL PACE 18
OF POOR QUALITY

2ig.Fegister_TyTe “Wezer*, Tis.Fl:at_Tag!:
Volcs conscant 2is.

Cis.Register_Tyre "Velts*, Dis.Flzaz_Tag;: ,
Kvolos constant Jis.Type_Id :=

) ore
*
w

.Register_Tyre (Dis.Null_Compornent, *¥volcs®, IZis.”lzat_Tag):
- Miscelanecus tyres

Decizels : zocnszant Dis.Type_Id :=

Dis.Register_Tyfe (Dis.Null _Componenc, “Decibels”, Dis.Float_Tag);
Decibels_Cp : zonstant Dis.Type_Id :=

Dis.Register_Type (Dis.Null _Component, “Cecibeis DP”, Dis.Double_Tag);
Rpm : constant Dis.Type_Id := Dis.Register_Type

‘(Dis.Null_Componen:, *Rpm*, Dis.Floac_Tag):;

Non_Dimensional : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null Component, *Non_Dimensional®”, Dis.Float_Tag):
Non_Uimensional _Cp : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component,

Non_Dimensional DP, Dis.Double_Tag):

Kilobytes : constant Dis.Type_Id :=

Dis.Register_Type (Dis.Null_Component, ”Kilobytes®, Dis.Float_Tag):
Megabytes : constant Dis.Type_Id :=

Dis.Register_Type (Dig.Null_Component, “Megabytes”, Dis.Float_Tag):

it

Ayl o

-- Enumeration types

package Spt is new Dis.Enum_Functions (Std_Eng_Units.Shapes}:
Shapes : constant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, “Shapes”, Dis.Enum_Tag,
Labels => Spt.Labels,
Size => Spt.Size):

end Sstf _Defs;

QRIGINAL PAGE IS

54 OF POOR QUALITY

il

d

8.6. Timer_Services_Class

The Timer_Services_Class is a service package that is used to support classes that wish to run at a slower.
" harmonic rate of the partition. Timer_Services_Class must be used as shown in the Class Template with
Computed Period (7.2). Within a given period, the service procedure Update mustbe called before the selec-
tor functions Time_To_Execute and Actual_Deita_Time are valid. Time_To_Execute must be true to get a
valid, non-zero, time from the Actual_Delta_Time function. The current implementation of Timer_Ser-
vices_Class is listed below.

with Std_Eng_Unics:
package Timer_Services_Class is

package Seu renames Std_Eng_Units; --Simplifies parameter names.

type Rates is (Full, Half, Quarter, Eighth, Sixteench, Thirty_Second, Sixty_Fourthj;
subtype Period_Offsets is Natural range 1..64;

type Object is limited private: --Limited private is preferred.

B T R X R LR RS R R RS R AR RS RS R Modifiers Z X222 RS RARRRR2222 22222 R R)

procedure Crearte (Timer : in out Object;
Subrate : in Rates = Full; -
Period_Base_Time : in Seu.Seconds = 0.0; il
Period_Offset : in Pericd_Offsets := 1l}: £
procedure Update (Timer : in out Object; i

Delca_Time : in Seu.Seconds) ;

U S XX 22222222222 X222 SRR R SR Selectors (1223222222222 R RS2 AR RRRRRS)

function Time_To_Update (Timer : Object) return Boolean; »
function Actual_Delta_Time (Timer : Object) return Seu.Seconds;
function Get_Child_Rate

{Parenc_Rate : Rates;

Rate_Off_The_Parent : Rates) return Races:

private
type Object is
record
Period_Time : Seu.Seconds := 0.0;
Timer : Seu.Seconds := 0.0;
Timer_Offset i Seu.Seconds := 0.0;
Delta_Tims : Seu.Seconds := 0.0;
Time_To_Update : Boolean := False;
end rwgords)
end Timer_Serviced _Class;
___________ i U
-~} Abstract : This class provides the timer services needed to run class
--1 instances at a slower, harmonic relative rate of the partition
--1
--i Warnings : None.

ORENAL PAZE IS

OF POOR QUALITY =59

9. APPENDIX Il - QUESTIONS AND ANSWERS:

9.1. Ada Structural Components:

1. Why is SSVTF deftining and encouraging the use ot a defined and consistent Ada struc-
tures (classes, partitions)?

Experience has proven that for large object—oriented real-time Ada programs, itis important to clear-
ly define and consistently implement the software to assure success. Adais a general purpose lan-
guage thatcan be used in a variety of ways. Haphazard use of Ada constructs in a so—called object-
oriented design methodology can easily defeat the point of what makes QOD a benefit. Adding 1n
real-time and simulation constraints can worsen the impact. The most logical approach is to define
what Ada structures support the requirements and design methodology and then consistently apply
them over the entire project. These structures provide the basis for the design. However, they are
not meant to be overly restrictive — if there are good reasons to move slightly outside the standard
and the overall design goals are not corrupted, then no problem. In mostcases, the design standard
will be improved in these cases.

2. Why are there partitions?

Regardless of what your - :sign is, at some point, the final class instances must be created some-
where - usually in an Ada - ain program or ASM. For areal-time, distributed system, large progrgms
must also be divided into self—contained manageable chunks that can be easily configured intoghe
system. Those chunks are ~equivalent to Cls on SSVTF. Ada mains could be the chunks, but mdins
are usually too large, restrictive, and britde. Non—robust communication methods usually reqgire
modelers to assume certain build configurations (what model is on what cpu). SVM was built to pro-
vide a seamless interface to support distributed processing so models could run on a “virtual single
machine”. The best level to provide this service was at the partition level — the level below the Ada
main. In addition, Ada 9x will support partitions and this will make SSVTF closer to the future Ada
standard. Partitions therefore are not an SVM particular requirement — they are a reality.

3. When do you make an Ada main? How many partitions in an Ada main?

For the target machine, Ada mains will be constructed out of 1 or more partitons. The number of
partitons within an Ada main depends on the RMS rate and execution time requirements of each
partiion. 'In general, modeiers do not need to worry about this.

4. What s the criteria for choosing partitions for a Cl? Can there be too many or too few?
How large can a partition be (lines of code and execution time)?

ACl canbe made of 1 or more partitions, a partition could represent several Cls, or a set of Cl require-
ments couid be divided amongst many partitions. The first situation is the most common. A better
way to think about partitions is that they represent a logical assembly of objects representing some-
thing In_the real world. They may be real-worid objects themselves like a star tracker, or they are
a collection of objects that perform a real-world capability like a hydraulics system. The determina-
tion on whatis too many or too few depends on the system itself and a compromise between the vari-
ous real-time constraints. As a note, the more partitions there are, the more overhead processing
is required to schedule and to send messages. Eventually, there will be timing values measuring the
overhead. Also note thatpartitions, in general, should assume a timelag of one period for data. There
are options to sequentially data between partitions running on the same cpu and same rate (see mes-
saging system), but this is not the norm. Large partitions on the other hand could result in very large,
monolithic models that are hard to manage and cumbersome to use 3asically, a Cl should be de-
signed such that is is decoupled and easy to work with. The modeler must strike a good balance.

A partiion must be able to execute on a single cpu. The cu}rentesﬁmate is 10 SMIPS /processor.
As for size, it varies widely but a good number is between 5-20 KSLOCS per partition (average).

ORIGINAL PAGE IS

-1 OF POOR QUALITY

L

5. How is a class represented in Ada?

Classes are constructed as Ada abstract data type packages. See appendix |.

6. Do all class structures need create, request_state_change, update, and selectors?

Update is required since the models usually do something over time. Request_State_Change is
needed for object initialization or aperitif change state requests (like malfunctions). Selectors are
usually needed to extract state data from the object unless the OUT parameters are used in the Up-
date routine. Itis preferred to use selectors. Create is optional since it supports 1 time instance con-
figuration. Using Create to configure a class is equivalent to creating an Ada generic class. Create
is called during program elaboration.

NOTE: Using these specific names (Update, Request_State_Change) are not critical (but recom-
mended). Other names (such as Initialize for Request_State_Change) are ok. The important point
is the meaning of these procedures — class structures should be consistent in implementation. For
example, the Initialization procedure must support singular state changes as the Re-
quest_State_Change procedure does. There can be more (or less) procedures actually implement-
ed as long as the structural meaning is retained.

7. Why are local variables in a partition’s body? Why are there no parameters in partition
body routines?

Local variables in the partition body are either the state of the partition (along with the class instances
declared there), or they are temporary values thatare used to hold intermediate transitions of external
data to class data parameters or to hold OUT parameters from classes. In many casaes, itis unavoid-
able not to have these parameters. Using selectors in class structures reduces the number of these
variables.

There can be procedures with parameters in the body of the partiton. The "parameteriess” proce-

dures are simply groupings of object connections for maintainability and modularity concerns. ltap-
pears (and is true) that these procedures are working off of common data in the partition body. but
placing the logic of these routines within a single update routine can make for a very long procedure.
Modeler discretion is required.

8. Can lone variables be declared in a partition’s spec or class specs or bodies (outside the
private type)?

No, never. Doing so would cause bad side—effects in that global data would be created in the system.
In partitions, lone variables in the spec imply that someone is going to read them. Since partitions
never WITH (reference) other partitions directly, this would invalidate the whole point of building a
seamless distributed system (creating a full-ledged mess). Lone variables outside the class private
type (but defined in the class) is equivalent to creating global data. Doing this invalidates the whole
poiat of object-orientad design. Side—effects would include modeis that work stand—alone but fail
on the integrated sim or exhibit peculiarities during integrated operations (data being changed arbi-
trarity). (Note thatlocal data variables declared in procedure declaration sections are valid since they
exist only during the life of the procedure call.)

9. Why are there DIS objects in interface definition packages? Aren’tonly "types” allowed

here?

ORIGINAL PAGE IS

True, types are only allowed here. The DIS object however provides a unique ID for a message. A
unique ID is required to dynamically connect partition messages during set-up (senders must say
which message they are outputting, and receivers must state what message they want to receive.
The DIS id is the "way" they identify the specific message). This object is not global data since it is
never read or written to — rather, itis used to set up a unique ID for the message during set—up only.

-2

OF POOR QUALITY

10. Should message records have defauit values in interface definition packages?
No. Multiple distributed elaboration will cause the messages to reset multiple times. Also, the mes-

saging system design cannot take advantage of default values (since pointers are never allocated).
Messages are first initialized during the self-init mode by the defining partition (the sender).

11. Why are there access types in Interface_Defn packages?

Two reasons. (1) The software backplane is a general messaging system. Itis not (and should not)
be dependent on the data types sent by partitions. Pointers of the access types are used to point
to the memory of the partiion's message area as an address. Knowing the message size, the back-
plane can send messages generically (bytes) from one partition to another. (2) For efficiency rea-
sons, the pointers defined in the partition body can be manipulated (in some cases) instead of actually
copying data. Messages are truly sent, but the most optimal method can be performed by the back-
plane.

Note that pointers of the access types are never allocated (using the NEW construct). SVM uses the
pointers as address pointers only.

12. Can class data types be WiTHed Into interface_Defn packages, or do all interface types
have to be in the Interface_Defn package or SEU/SET?

Classes should not be WiTHed in interface_Defn type packages. This would tie the whole sysiem

together from the top to the bottom causing compilation problems and would be very non—resifjent

to change. Try to keep interface data atomic using SEU types. !f a class defines its own type, letthe

partition convert it if it ends up in the interface. i
13. Why are access pointers used in non real-time and records used in real—time in defining
class abstract data types?

The advantage of using access types for the limited private type is that the attributes of the object
can be deferred to the body. The disadvantage is that the memory for the variables are declared on
the heap during startup and are therefore not available in the symboi map r real-time debugging.
Since r/t debugging is necessary, access types cannot be used.

14. Why doesn’t the standard allow non-partition ASMs as a legal construct in addition to
the class structure?

This standard discourages the use of ASMs as a general programming structure for the following rea-
sons. (1) ASMs are Ada structures not normal in other OO languages. In these languages, classes
are like ADTs, period. (2) Developers tend to make ASMs talk to ASMs directly (which is notpossible
with ADT class structures). This will eliminate a possible reuse without code modification and results
in a more brittle design. (3) If designers first think in terms of ADT classes, it has been proven that
betisr QO designs materialize. If the mind set is ASMs, then resulting design usually isn’t as robust

as it could have been.

There are cases however where ASMs are the best solution. In those cases, the standard does not
discourage their use.

15. Why aren't class structures defined as gener’ SM’'s?

Generic ASMs do make good class structures exce;. ~atthey are Ada—specific (non—standardclass
structures). in addition, there is a certain inefficiency with Ada generics that can be significantif used

too much. The standard discourages generic ASM classes primarily to stick with current OO technol-

ogy and to give us a fighting chance to fit the processing of the trainer into the purchased computer
systems.

JIEX]

Note that generic ADTs are reasonable structures if classes are to be generalized. Again. generics
shouid be used judiciously (don't go overboard). Note thatit takes longer to develop a generic class
than a specific class (experience has shown) — make sure they are worth it.

16. Can Ada tasking be used for real-time applications?

No (unless there is an extremely good reason). Ada tasking conflicts with the RMS real-time schedul-
ing activities. SVM will notbe able to control the task and sequence other models correctly. If tasks
are used, they most likely will have to run in their own UNIX process (further complicating RMS and
the load configuration). Tasking in general shouid be used only when truly necessary — using the
construct for the sake of using it will only lead to unnecessarily complex designs.

17. How do we test a partition in standalone? Can we use the Rational?
Not yet, but there is an effort underway to support partiion testing on the Rational.

9.2. Executive Sequencing and Moding:
1. How do | run my model in real time?

Section 4.1 describes how a model runs in real-time under SVM. Basically, a partition instantiates
apackage called "Periodic” rom the "Generic_Model" package (appendix Il, pg 66) and provides the
update rate (in hz) and mode routines applicabie to the partition (run, freeze, hold, etc.). From that
point on, the thread executive calis the partition's mode routines at the appropriate ime and at the
proper rate. i

2. How does a model (partition) get the time or deita time to be used when updating the state?
What is the unit of ime (seconds, microsecs, millisecs)?

The unit for time is defined in SEU as "seconds” (real number). Classes and partiions should use
this type for defining update times. Time itself can be obtained two ways. When a partition instan-
tiates a thread executive from the package "Periodic” in the "generic model” (see appendix I1.), a vari-
able "Delta_Time* becomes available. This is the deita time based on the period time of the thread
executive (i.e. 0.100 for 10hz, 0.033_333 for 30hz). It will always equal thisinterval. 1f SGMT or GMT
is needed, the partition may call the selectors G_M_T or S_G_M_T also in the "Periodic” package
specification. This returns the period—elative GMT/SGMT time for the partition. Period—relative
means that the clock with respect to the using partition ticks at the rate of the partition (i.e. 100ms
or 33.33ms increments for 10hz or 30hz respectively). Note thatreading the actual time (i.e. to the
current microsecond) from the partition is not generally provided since with RMS, the model execu-
tion may slide around in the period producing inconsistent time values. Periodrelative imeis the only
consistent clock for the partition. For special cases, however, instantaneous time can be made avail-
able. _

3. How do e mode routines execute?

The instantiation of the *Periodic” package of the "Generic_Model" takes a genéricrforma;l parameters
the partition’s mode routines. The thread axecutive created from the instantiation coordinates its acti-
vities with a SVM master executive and then executes the correctmode procedure at the correct ime.

4. How do | chose the rate the partition runs at?

The rate of a partition is based on the response required by the model. Response should be the
minimum rate (slowest) based on how the student will perceive the real-time behavior. If the student
can't perceive the difference between 30 hz and 10 hz for the particular model, use 10. Response
requirements also depend on the hardware. The model must run fast enough to service hardware

-4

(otherwise, the hardware may enter a fault mode). The modeler shouid be aware of the execution
rate differences (and its implication to data flow) between producer partitions and consumer parti-
tions. Execution rates for the partitions do not have to be harmonic, but data may appear to be
irregular between non-harmaonic partitions. In the example below, a 25Hz partition consumes data
produced by a 40Hz partition. the data is taken from the producer’s period that has completed im-
mediately before the beginning of the consumer's period. The producer executes eight times to every
five executions of the consumer, and so produced data is skipped in a pattern repeating every 200
milliseconds.

25Hz consumer CLLDNNILLANN L7V VRIS AN R RV /78 B 1 NS TR SINSNTTTRNNY

4oz producer SNETPZRNI TV ZNNT T ¥ Z AN N P77 ANY T W 7 AN T Y7 AN T ZASN I X 77

| |
milllseconds 0 200

§. How do | determine how much fidelity to build into a model?

Fidelity is dependent on what the student or instructor want to see in the way of data and the amount
of functionality required. The fidelity of the model should be the minimum required to support the
training. For example, if a student cannot detect the effects of a valve in transition (opening or clos-
ing), then a full fidelity valve simulation is not needed. A simple open/closed model is adequate. If
the transition causes effects based on the transition that are detectable, a higher fidelity model may
be needed. Strive for the minimum required fidelity. With a good objectized design, the model ﬁdiity
can always be easily increased.

L]

6. Can objects run slower than partition? S

Yes. However, the intentis to have an entire partition execute ata given rate (as a whole). For special
circumstances (due to execution cost), modelers may siow down objects defined by a partition — the
reduced rate must be a harmonic (1/2, 1/4, 1/8, etc.) of the partition rate. Modelers will have to bal-
ance the partition across the partition periods and execution must stay within partition periodintervais
(all execution must complete within the partition worst case RMS time aliocation per period). Refer-
ence Appendix |, 7.2 (class template with computed period) for an example structure. Modelers may
use other means "o sub-schedule (internal jump-lists), but the above approach is the recommended
approach

7. Why is the partitions interface definition WiTHed in the spec instead of the body?

By convention only. If you look at the partition spec, you can see what interfaces it externally refer-
ences. if the external interfaces are Wi THed in the body, they will mix with all the WITHs of the internal
classes and other packages.

9.3. Messaging:
1. How do pariition’s (model) communicate?

Partitions communicate only via the software backplane via the SVM interface packages Message
and Mailbox. Partitions define message structures in "Interface_Defn" packages.

2. When do | use one—~to-many?

M: st real-world interfac- s (electrical wiring, pipes, busses, electrical signals, <:c.) use the 1-to—
moy messagmg approz.n. This approach shouid be used when the produmr outputs a message
t any receiver can receive. 1-to—many can be 1-to—-1. ~=~== "=

3. When do | use many-to—one?

(

=

ONGINAL PAGE I8
li1-5 OF POOR QUALITY

Many-to—1 is used when a partition has many inputs all of the same message type. For example.
many producers supply load back to the electrical system. The electrical system defines the type and
the producers use that type to send the message to the electrical system partion. The messages
are queued so none will be missed.

4. When do | use mailbox?

The mailbox should only be used for command and control (non real-world interfaces). Normaily,
partitions will only read their mail, not send it. The IOS will use mail extensively to send malfunction
requests.

5. Can transaction processing run under SVM and RMS?

Not easily (actually no). RMS assumes that models execute at a given periodic rate for a set ime.
RMS theory can then guarantee the periodic updates. A transaction process has an inconsistent
cycle ime (eventbased) and runs till it's done (not abiding by the periodic cycle rules). This will cause
the other RMS models to miss their deadiines. Merging the two execution models (RMS, transaction)
together is very non frivial, opens up cpu performance, cpu allocation, and UNIX process and OS
issues, and results in a brittie software design. It can be done, but we'd rather avoid it.

9.4. Generic Partition:

1. If a model is designed as a partition and is a generic system, what options are there for
reducing the duplication of code? H

In special cases, the modeler can define a partition using a generic. This allows multiple partitions
to be created from a single code module. Reference the generic partition write—up in this document.

9.5. DIS
1. Why is DIS necessary?

In order to "see” data on the I0S or gather data for datastore, there mustbe a capability to map logical
names tophysical variables and a way to uniquely id the variables. In addition, there is a requirement
for no off-line tools. The DIS provides this capability and a few more features like providing unique
message ids and partition ids. DIS is "part of the code” therefore no off-line toois are needed - the
symbol mapping will always be updated with the loads.

ar

It

L.

2. How does I0S get access to data variables in system?

Via the DIS identifiers and a DIS feature called "look” that can gather data via its address. The |IOS
maps |OS page variables to DIS names, sends a request to SVM to see the symbol, and SVMreturns
the bytes that make up the symbol.

3. How do we reed and set variables for engineering debug? Are DIS variables used for this
type of engineering analysis?

The RTSC Ada compiler vendor will provide a real-time debugger. DIS variables can be used for
engineering analysis, but modelers should not add non—0OS DIS parameters just for this purpose.
The DIS has a reasonable limit on the number of variables it can register.

9.68. Datastore:

1. Why s data extracted using peek operations but brought back by using malibox? The
mallbox approach is cumbersome, why not poke the data back into the addresses?

Peek operations will not harm the model and the model does not have to do anything extra except
for registering datastore data in the DIS to support this approach. The mailbox is used for inputs be-

ORIGINAL PAGE I8 n-6
OF POOR QUALITY

cause notall the state of the objects is datastored. Updating a partial state via apoke operation (back-
door) will cause problems. The mailbox allows the model to logically apply datastore data via "Re-
quest_State_Thange” class operations. '

There are stll some issues with the approach that are being worked out. This area will be tuned and
simpilified in the future.

2. Why can’t partitions define records for datastore terms instead of each individual term?

Theinstructor and RECON need to see the ASCli names of the datastore terms (and other associated
information). Extracting binary records will not support this activity. In addition, if the load changes.
datastore binary records may be altered causing an odd failure on return to datastore (if the partition
overlays the record representation onto the binary datastore file).

3. What data should be datastored?

Only independent variables. Variables that can be obtained or derived from other partitions’ output
data or internal independent data should not be in the datastore. Models should keep the terms at
a minimum. Currently, SSVTF is limited to around 40,000 terms. This issue still needs work.

9.7. Interface Agent:

1. SVM allows transparent connections between partitions, but between assets an interface
agent is required. Why?)

The software backplane can route messages to other assets without interface agents. However,
there are special requirements on SSVTF regarding assets because they can be added, dropped,
simulated, or stimulated. Something must exist to provide these modeling functions. Also, when con-
nected to heterogeneous platforms, the interface agent must make sure the bytes are ordered cor-
rectly. Moding of the asset must also be managed. See the write—up on interface agents.

-7 7T e

¢

ot

10. APPENDIX IV -EXAMPLE CODE (NON-REAL-TIME)

-- 'ni- Name

-= AzscTract

--. ZTxceprions

--' Warnings

--1 Author

--{ Department

--i Revisions

-~i O-Spec

--1{ Copyright

Lesson_Class

Coatrsls a set of Lectures, Data_Recoriings, Control_laws,
and an Exit_Test to achieve one or more learning cbjectives.
Jses an .nteractive Control_Farel to permit the student Lo
soncrol the Lesson progress.

Regquestor_not_Authorized

None.

Gary Young
TSC.SSVTF.Computer_Systems.Software_Engineering
Date Author

4-30-92 Bill Wessale

--Added Header

6-1-92 Gary Young

Added Selector and Modifier sections
Implemented Selectors : Script_Id, Version,

Active_Object_ID, Next_Object_ID, Currenc_Step,
Percent_Complete, Prerequisites

: JSC-32xxx, Section S

Developed by CAE-Link under the Training Systems Contract
for the Johnson Space Center (JSC) of the National
Aeronautics and Space Administration (NASA). All rights
reserved.

with Std_Eng_Types:

package Lesson_Class is
type Object is limited private:
type Object_Id is (Tkd}:
type Prerequisite_List is (Tbd):
package Ser renames Std_Eng _Types;

subtype Steps is Set.Positive range 1 .. 500;
—— AT RAEIRRARRRENRDNS Modlfler‘ 23222222 22222222 R2 R 22 RAS

procedure Create (Instance : in out Object):
procedurg Destroy (Instance : in out Object) ;

procedur§ Revise (Instance : in out Object);

procedurs Browse (Instance : in Object}):

proceduré Rxport (Instance : in Object; File Name : in String);

procedure Import (Instance : in out Object; File_Name : in String): .
procedure Start (Instance : in out Object):

procedure Pause (Instance : in out Object};

procedure Resume (Instance : in out Object);

procedure Backspace (Instance : in out Object; Number_Of _Steps : in Steps):
procedure Skipahead (Instance : in out Object; Number_ Of_Steps : in Steps);
procedure Kill (Instance : in out Object);

procedure Report_Status (Instance : in Cbject):

procedure Activity_Complete (Instance : in out Object) ;
_— AR ATRREFINEANRRTRY Selectors 222 E22X2X22ER2X2 2222222

function Script_Id (Instance : in Object) return String;
function Version (Instance : in Object) recurn String;

V-1

A

Ak

Jurrent_Step (Instan ©own tktecz) Urm PosSLTL e
. Ferzent_Tomplete (I z 1 FoslIive;

st o Lin Zefeczt urn rerequisite_Lisz;

s}

Frarequisices (I

tyre 3tate;
yre Tbiect 13 access 3State;

end Lesscon_llass;

-~ Jnit Name : Lesson_Class

-~t Aythor : Gary Young

-1

--i Department : TSC.SSVIF.Computer_Systems.Scftware_Engineering
-=1

-~1 Revisions : Date Author

-1 4-30-92 Bill Wessale
--1 --Added Header

-~} O-Spec : J8C-32xxx, Section S

-=1

--1 Copyright : Developed by CAE-Link under the Training Systems Contcract

-—i 1952 for the Johnson Space Center (JSC) of the National -
--1 Aeronautics and Space Administration (NASA). All rights ®
--1 reserved. i}

with Training_Script_Class;

package body Lesson_Class is
type Script_Designator is (Thd);
type Version_Designator is (Tbd):
type State 1is

record
Script : Training_Script_Class.Object;
Cur. ent_Mcde . : Set .Mode 1z Set.Initcialize;
Scripe_Id : Script_Designator := Tbd;
Version : Version_Designacor := Tbd:
Active_Object _Ids : Object_Id 1= Thd:;
Next _Object _Id : Object_Id r= Thd;
Current_Step : Steps HE
Percent_Complete : Set.Percent HESNV
Prerequisites : Prerequisite_List := Tbhd;

end record;
procedure Create (Instance : in out Object) is
begin

pt_glall.create (Instance => Instance.Script);
-- Inl i¥e the Current_Mode component

end Creat®p: - .

procedure Destroy {(Instance : in out Object) is

begin
Training_Scripc_Class.Destroy (Instance => Instance.Script):;

end Destroy:

procedure Revise {(Instance : in out Object) is

begin
Trainin. Zcript_Class.Revise {Instance => Instance.Script);
-- Rev ~he Current_Mode component
end Revise ="

procedure Browse (Instance : in Object) is
begin .
Training_Script_Class.Browse (Instance => Instance.Script);

V-2 ORIGINAL PAGE IS
OF POOR QUALITY

i

raining_Script_llass.Exgort
_nstance :=> Instance.3Crigpt,
-- Apgerd the Zurrent_Mode Co thte

ImpcrT cInstance : in out Object; File_Name : in String) s

ing_Scripz_Tl.ass.Import
‘Instance => Instance.Script, File_Name => File_Name):
-- Input the Current_Mode
end Import:
procedure Start (Instance : in out Object) 1is
begin
Training_Script_Class.Start {Instance => Instance.Script);
-- Change the Current_Mode component to the appropriate mode
end Stcart;
procedure Pause {Instance : in out Object) is
tegin
Training_Script_Class.Pause (Instance => Instance.Script};
-- Change the Current_Mcde component to be Paused
end Pause:;
procedure Resume (Instance : in out Object) is
begin
Training_Script_Class.Resume (Instance => Instance.Script};
-- Change the Current_Mode component to the appropriate mode
end Resume;
procedure Backspace (Instance : in out Object; Number Of Steps : in Steps)
begin
Training_Script_Class.Backspace {(Instance => Instance.Script,
Number_Of_Steps => Number_ Of_Steps}:
end Backspace;
procedure Skipahead (Instance : in out Object; Number_ Of_Steps : in Steps)
begin
Training_Script_Class.Skipahead (Instance => Instance.Script,
Number_Of _Steps => Number_Of_Steps) ;
end Skipahead;
procedure Kill (Instance : in out Cbject) is
begin
Training_Script_Class.Kill (Instance => Instance.Script);
-- Change the Current_Mode component to Killed
end Kiil;
procedure Report_Status (Instance : in Object) is
begin
Training_Script_Class.Report_Status (Instance => Instance.Script);
-- Report status on the Current_Mode here
end Report_Status;)
procedure Activity Complete (Instance : in out Object) is
begin
Training_Script_Class.Activity Complete (Instance => Instance.Script};
-- Change the Current_Mode component to be Completed.
end Activicy_Complete;
function Script_Id {Instance : in Object) return String is
begin
return Script_Designator’Image (Instance.Scripc_Id);
end Scripc_Id;
function Version (Instance : in Object) return String is
begin
return Version_Designacor‘Image (Instance.Version); .
end Version; ’

S V-3
ORIGINAL PAGE 18
OF POCR QUALITY

end

v
n
'
[t
1
it
e
ih
.
0

funcouorn Active_tbiect_I3i Inmstance Ln lftest

reclirn Lnstante.Active_lkiect_Ids;
ve_Cbiecz _13;
czicrn Next_Tbresz ze : in

funcoisn Jurrent_3tep [Instance : in Jblec:; recurn Peositive is
cegin
return instance.lurrent_Step:
erd Turrent_Step:
function Percentc_Clomplete [Instance : in Cbject; recurn Posicive is

rezcurn Instance.Percent_Complete;
end Percent_Complece;

function Prerequisites {Instance : in Object} return Prerequisite_List is

begin
recturn Instance.Prerequisites;
end Prerequisites;
Lesson_Class:

V4

d

[

ORIGINAL PAGE 18
OF POOR QUALITY

11 Appendix V - Hydraulic System Example

The following is an example of a real world hydraulic system and its representation as a simulated soft-
ware system. This example will include design considerations based upon the SSVTF architecture as
outlined in this document.

11.1 Real World Hydraulic System

The hydraulic system provides pressurized hydraulic fluid to actuators that move the control surfaces and
raise and lower the landing gear. The system is controlled via the hydraulic control panel which provides
switches to control the system. The system sends signals to the hydraulic control panel so that the con-
trol panel can display the status of the system. The system receives power from the electrical system

Refer to figure 1 for a pictorial representation of the hydraulic system and related components. Notice
that aithough the actuators, control surfaces, landing gear. hydraulic control panei and electrical system
are shown in the figure, they are modeled as separate entities. The modeling of these external compo-
nents will not be done here. This example will, however, model the interface to these entities.

Therefore, the hydraulic system includes the following components:

¢ Two fluid pressurization assemblies that each include one motor, one gear box and
one pump

s Two valves

¢ Two accumuiators

¢ One reservair

+ One reservoir quantity sensor
e« Two pressure sensors

e A fluid distribution system

e Fluid return lines

11.1.1 Fluid Pressurization Assembly

A fluid pressurization assembly is a collection of mechanical devices that convert electrical power to hy-
draulic pressure. This assembly includes a motor, gear box and pump, each described as follows:

11.1.1.1 Motor

The motor uses electrical power to turn a shaft that drives the gear box. |n providing power to the gear
box, the motor in turn produces a load on the electrical system.

The motor is powered on and off via a switch on the hydraulic control panel. The motor provides an in-
dication of whether it is on or off back to the hydraulic control panel.

11.1.1.2 Gear Box
The gear box transfers torque from the motor to the pump.
11.1.1.3 Pump

The pump pressurizes the hydraulic fluid provided by the reservoir. It also sends its operational status to
the hydraulic control panel.

11.1.2 Valve

A valve allows the isolation of the pressurization system from the distribution system. Since this valve is
electrically actuated it produces a load on the electrical system.

V-1

The valves in the hydraulic system are controlled via the hydraulic control panel. The valves provide the
hydraulic control panel with an indication of their position, ranging from open to closed.

' 11.1.3 Accumulator

An accumulator is type of damper that helps the hydraulic sy<:em maintain a constant pressure. Itis di-
vided into a fluid side and a gas side separated by a movable diaphragm. Hydraulic pressure is absorbed
by the accumulator by allowing the fiuid from the distribution system to push the diaphragm and increase
the gas pressure by lowering its volume. When the pressure in the distribution system lowers, the pres-
sure of the gas in the accumulator pushes fluid back into the distribution system.

11.1.4 Reservoir
A reservoir is a storage container for hydraulic fiuid.
11.1.5 Reservoir Quantity Sensor

A reservoir quantity sensor provides an indication of the level of hydraulic fluid in the reservoir.

The quantity sensor in the hydraulic system is electrically powered. It receives power from, and in turn
place a load on the electrical system. The quantity sensor provides a signal to the hydraulic control panel
so that the quantity of fluid in the reservoir can be displayed.

11.1.6 Pressure Sensor

A pressure sensor provides an indication of the hydraulic pressure in the distribution system.

Like the reservoir quantity sensor, the pressure sensors in the hydraulic system are electrically powered. S
The pressure sensors provide signals to the hydraulic control panel so that the distribution system pres- A4
sure can be displayed.

11.1.7 Distribution System

A distribution system is a network of hydraulic tubing that distributes pressurized hydraulic fluid to the ac-
tuators.

11.1.8 Return Lines

Return lines return excess hydraulic fluid from the actuators and distribution system to the reservoir.

V-2

Legend

Valve
Accumulator
Pressurized Line
Return Line
Pressure Sensor
Quantity Sensor

Landing Gear

Control Surface

Actuator

$
4
+—
[

sweeesessvcewsswphee

lp ©

Sensors
Valves <€——31 yypRrauLiIC
. CONTROL
. Pumps ———3» PANEL
] »
PUMP} -+ ~-{PUMP Motors <€———
GEAR GEAR
BOX BOX

¢ . »
ELECTRICAL
Valves SYSTEM
Motors

Real World Hydraulic System

Real World Hydraulic System

Figure 1

V-3

11.2 Specification of the Software System &

in order to create a software simulat.c - of a real world hydraulic system, all relevant components of the
real world system must be modeled. as well as any additional components to support the simulation. Two
such support components in this example are the |OS and the aural cue. Mcre details on these two com-
ponents will be given later.

11.2.1 External Components

At this early point in the analysis, the system can be defined in terms of components that are internal (ac-
cumulators, distribution system, reservoir, etc.) and components that are external. The externals are as
follows:

s Control surfaces (includes control surface actuators)
s Landing gear (includes landing gear actuators)

o Electrical system

e Hydraulic controi panel

e I0S

e Auralcue

Aithough this example will not give the details of the external models, it does specify the interfaces to
these externals. Figure 2 shows the associations of the hydraulic system and its externals.

11.2.1.1 Control Surfaces

The real world control surfaces are moved by actuators which are connected to the hydraulic system. -
The control surface actuators consume fiuid based on the pressure of the fluid provided by the hydrauiic A —4
system. The actuators also return fluid via the retum lines. The interface between the hydraulic system

and the control surfaces will therefore provide a mechanism by which the hydraulic system can provide an

‘indication of the available pressure and the control surfaces can provide the actual pressure flow (in-flow)

and the return flow.

11.2.1.2 Landing Gear

Although the landing gear model would be quite different than the control surfaces model, the interface
between the hydraulic system and the lancing gear is similar to the intertace between the hydraulic sys-
tem and the control surfaces. The interface must provide a mechanism by which the hydraulic system
can provide an indication of the available pressure and by which the landing gear can provide the actual
pressure flow (in—flow) and the return flow.

11.2.1.3 Electrical System

In addition to prowviding power to other systems, the real world electrical system provides power to the
sensors, valves and motors in the hydraulic system. This is modeled in the software system via an inter-
face by which the electrical system provides the status (on of off) of each of the relevant circuit breakers.
The interface must also allow the hydraulic system to provide the electrical system with the load that it
places on each of the corresponding circuits.

11.2.1.4 Hydraulic Control Panel

The real world hydraulic control panel commands the motor to power on and off and commands the
valves to open and ciose. The hydrauli~ control panei aiso displays the status of the hydraulic system via
a selected set of parameters. These - :meters include pump and motor status (on or off), valve posi-

tion, indicated pressure and indicatec -ervoir quantity. The interface between the simulated hydraulic =
system and the simulated hydraulic control panel must provide a mechanism by which these parameters
are passed between the two.

V-4 ORIGINAL PAGE IS
OF POOR QUALITY

11.2.1.5 10S

The 10S allows an operator to control the overall simulation. For this example, the operator may insert
malfunctions and display and modify certain object state variabies.

11.2.1.6 Malfunctions

Table 1 presents a list of simulated malfunctions which effect the Hydraulic System CSCI.

Malfunction name

Description

Allocation

PUMP—#1 FAILURE

Pump #1 does not produce fluid
flow when prime mover is provid-
ing RPM.

Hydraulic Pump.

PUMP—#2 FAILURE

Pump #2 does not produce fluid
flow when prime mover is provid-
ing RPM.

Hydraulic Pump.

demanded fiow. Possible water
hammer transients in circuit #2.

PRESSURE COMPENSATION |Pump #1 cannot regulate pres- | Hydraulic Pump.
FAILURE #1 sure. Pressure varies wiidly with

demanded flow. Possible water

hammer transients in circuit #1.
PRESSURE COMPENSATION Pump #2 cannot regulate pres- | Hydraulic Pump.
FAILURE #2 sure. Pressure varies wildly with

VALVE #1 FAILURE

Isolation Valve #1 is stuck in
position it was in at the time mal-
function was inserted.

Hydraulic Distribution System.

VALVE #2 FAILURE

Isolation Vaive #2 is stuck in
position it was in at the ime mal-
function was inserted.

Hydraulic Distribution System.

PRESSURE SENSOR #1 FAIL-
URE

Pressure Sensor in circuit #1
fails to indicate zero (0) psi.

Hydraulic Distribution System.,

PRESSURE SENSOR #2 FAIL-
URE

Pressure Sensor in circuit #2
fails to indicate over pressure.

Hydraulic Distribution System,.

MOTOR #1 FAILURE

Electric Motor #1 fails to produce
RPM, but is not jammed.

Hydraulic Pump Drive Unit.

MOTOR #2 FAILURE

Electric Motor #2 fails to produce
RPM and is jammed.

Hydraulic Pump Drive Unit.

CIRCUIT #1 LEAK

1 GPM leak in circuit #1.

Hydraulic Distribution System

CIRCUIT #2 LEAK

5 GPM leak in circuit #2.

Hydraulic Distribution System.

Table 1

Hydraulic System Malfunctions

11.2.1.7 Look and Enter Data

Table 2 presents a list of the Hydraulic System parameters which will be displayed or modified at the instruc-
tor's station or recorded by the Session Manager Subsystem for any purpose. Of these parameters, reservoir
quantity and pump flow may be modified by the operator.

Parameter name

Description

Allocation

MOTOR #1 ON\OFF

Report commanded on\off status
of motor #1.

Hydraulic Pump Drive Unit.

MOTOR #2 ON\OFF

Report commanded on\off status
of motor #2.

Hydraulic Pump Drive Unit.

V-5

MOTOR #1 RFM

Report current RPM of motor #1.

Hydraulic Pump Drive Unit

MOTOR #2 RPM

Report current RPM of motor #2.

Hydraulic Pump Drive Unit,

FLUID LEVEL

Report fluid level in reservoir.

Hydraulic Distribution System.

PRESSURE #1

Report current pressure in circuit
#1.

Hydraulic Distributicn System.

PRESSURE #2

Report current pressure in circuit
#2.

Hydraulic Distribution System.

of isolation vaive #2.

FLOW #1 Report current flow generated by | Hydraulic Pump.
pump #1.

FLOW#2 Report current flow generated by | Hydraulic Pump.
pump #2.

VALVE #1 Report current open\close status | Hydraulic Distribution System.
of isolation valve #1.

VALVE #2 Report current open\close status | Hydraulic Distribution System.

Table 2 I0S Display parameter list for Hydraulic System

11.2.1.8 Aural Cue

The aural cue produces audio sounds of the mechanical devices that are being simulated. For this simu-
lation, the aural cue will produce motor sounds when a motor is on and pump sounds when a pump is on.
The interface between the hydraulic system and the aural cue therefore must provide a mechanism to

transfer these commands from the hydraulic system to the aural cue.

V-6

[

Aural
Cue

Provides_Commands_To

108 Commands_Operation_Of Control
Provides_Fluid_To Surfaces

Provides_Data_To Consumes_Fluid_fFrem

Provides_Commands_To Consumes._Fluid_From

Hydraulic Landing
Control Gear
Panel : :

Provides_Data_To Provides_Fluid_To

Provides_Power_To

Consumes_Power_From

Electrical
System

Figure 3 Hydraulic System External Association Diagram
'11.2.2 Internal Components
in terms of the object oriented analysis, the hydraulic system is viewed as an object composed of a

collection of lower order components that parallel the compasition of the real world system. The decom-
position of the hydraulic system into these components is is shown in figure 4.

V-7

? 11 _ ‘_ 11 J
ol 11
Ry
% .

Pt ¢ o

W M | ﬂﬂ 11 — 1 11 J
Hydraulic System Object i _H_

é Z Distribution System
m -] goc,sc,_m,wq
Pump E==)
Valve Sensor

Drive Unit Reservoir

Hydraulic System Object Decomposition

Figure 4 Hydraulic System Object Decomposition

V-8

11.3 Transition to Design

In review, classes may be composed of 1) other classes, 2) attributes and operations or 3) a combination
of both. Objects may be 1) an instance of one or more classes 2) composed of other objects instantiated
at a lower level or 3) a combination of both.) T

Furthermore, since an object is an instance of a class, one or more objects can be created from a class.
An object instantiated from a class in effect creates a copy of the attributes so that the newly created ob-
ject takes on its own identity (i.e. state), independent of all other instances of the same class. This sup-
ports the reuse principle. A class is said to be reused if more than one object is instantiated from the
class.

After the components of the hydraulic system are identified, they are allocated as objects or classes, or
further broken down into sub—components. Generally, these components shouid modeled as a class to
facilitate reuse. If the abstraction doesn't already exist as a class, a new class is created and added to
the reuse pool. |f the abstraction (or something reasonably close) does exist as a class, then the class is
reused and attributes and operations are added, if necessary.

11.3.1 Sensor Class

The simulation must support two pressure sensors and one quantity sensor. Since the two types of sen-
sors are similar, a general sensor class is created. The pressure sensors and quantify sensor are then
created by instantiating the sensor class with the relevant load units and sensed units.

11.3.2 Reservoir Class

A hydraulic reservoir class is created from a generic reservoir class much like the quantity and pressuréd
sensors are created from a generic sensor class. The hydraulic reservoir class is created by ingtantiating
the sensor class with the desired volume, volume rate units and time units.

11.3.3 Drive Unit Class

A drive unit class is constructed using lower level classes much the same way that the hydraulic pump class
was constructed. For this simulation the motor of the drive unitis a DC type motor. Suppose thatin the reuse
pool there exists an electric motor class with attributes of nominal_speed, nominal_torque, shaft_speed and
shaft_fail (boolean). Since a DC motor is a more specialized type of electric motor, inheritance is used t0
create a DC motor class. The DC motor class inherits the attributes and operations of the electric motor class
and adds the attributes load, minimum _voltage. maximum_voltage, nominal_load, nominal_speed and nomi-
nal_torque. Refer to the Elec_Motor_Class package specification on page V-17 and the DC_Motor_Class
package specification on page V-26.

11.3.4 Hydraulic Pump Class

A specialized pressure compensating hydraulic pump class is created by combining the attributes and opera-
tions of an axial piston pump class, an actuator class and a centrifugal pump class. Because the resulting
hydraulic pump classis very specialized in nature, it serves to show thatby using inheritance and composition,
it can be construeted with basic buildingblock classes. The composition of a hydraulic pump is shown in figure
6. Notice that an axial piston pump class is created by inheriting the attributes and operations of a positive
displacement pump class and defining additional necessary attributes and operations. The attributes of the
positive displacement pump class are summarized as follows: :

o Displacement (Gallons)
» Efficiency {No Units)
s FlowRate (Gallons Per Second)

s Total Piston Area (Square_Feet)

The axial piston pump class attributes include those inherited from the positive displacementpump class plus
the following:

V-8

s Bias Gallons Per Second)

s Delta_Flow Galloqs Per Second)

(
(
s Loss_Flow (Gallons Per Second)
(
(

e Pressure Psi)
e Scale No Units)
¢ Torque {(Foot_Pound_Force)

In this example an additional flow attribute is added to improve the fidelity of the simulation since the flow rate
attribute provided by the positive displacement pump class is overly simplified. Refer to the Positive_Dis-
placement_Pump_Class package specification on page V-36 and the Axial_Piston_Pump_Class package
specification on page V-39.

....... ~ Legend
| Prowon
LPump [ow
-
¢ _“__“I Class
O ‘Is composed of
[ep) inherity
| Poaltive Y 1 s an instance of'
i Dls ' 4
| S AR

Figure 5 Hydraulic Pump Composition Diagram
11.3.5 Other Classes

For this example, the accumulator, distribution system, vaive and gear box classes will all be of the nor-
mal (non-generic) class yariety.

In this design, all cantrol (interpreting messages, updating objects, etc.) is handled on the partition level.
Figure 6 shows the real world hydraulic system as an abstract state machine (ASM) and its decomposi-
tion into classes (abstract data types or ADTs)

V-10

¢

Notes

Legend O S— 1) Sequence Numbers dencte cardinaiity
on Compositioninheritance diagrams
O 19 composed of Hydrauiic System 2) Composition and Inhentance are
csa comtined on this diagram
D cbject 3) * Indicates an external component documaented
— _____"-—" in the Reusable Component Litrary
| class r

le - g : Generic Mode! :

| ,
v is an instance of Leeeeo J

—

Drive Unit

Hydraufic Pump
Y
l- 1
i
]
|
Quantty Fressure Diswioution | | 1sciation
Sensor Sensor Reservar pocumulator System Vaive
< 7 i 1] ¥
~ ’
’) 4 y
-.\b-l I-----|'-----1 ""{"I:'""': ==
. Distribution .
| ‘Sensor ! “Reservor :|Acwmulalov: | System :| Vaive 1 ! pigton
| [P leemo- | . | | JUP |

e,
:'ElodncMotov'

Figure 8 Hydraulic System Composition Diagram
11.4 Class Specification
A class specification is implemented as an Ada package. A typical class specification for the SSVTF proj-
ect contains the following:
¢ Attributes in the form of a limited private record type
+ Type declarations to support the modifiers
+ Modifier specifications
» Selector specifications
s A wodual description of the class

11.4.1 Attributes

Attributes define the state of the object. The attributes are collected in a single Ada record type and are
made unavailable outside of the package by declaring the record as 'limited private'. This allows an ob-
ject to be declared of the record type, but none of the attributes defined in the record may be directly ac-
cessed where the object is declared. Instead, the attributes are accessed via modifiers and selectors.

11.4.2 Type Declarations

Types are declared in order to specify pérameters that aré passed into the modifier operations. An exam-
ple for a switch class is as follows:

V-11

/Te Itmmanis is A.ni::a-:;e, i, X, Faily.
An input parameter is then specified using this type. such as:

oriacedure Request_3zate_lThange InsTince @ in ou:n lktecz;

Cymrand o oin Tommands; ;

Request_State_Change can then be used to initialize the switch, change the position attribute to ‘On’ or
‘Off, or cause the switch to fail.

11.4.3 Modifier Specifications

Modifiers are Ada procedures that allow the state of the object instantiated from that class to be changed.
Modifier names should be in the form of an action verb. Request_State_Change (above) is an example
of a modifier. Note that since one or more instances of the class may exist, the specific instance of the
class is passed to the procedure as an 'in out parameter. This allows the modifier to have access to all
attributes defined for the class and also allows the modifier to change any attributes of the class (hence
the name ‘modifier’).

11.4.3.1 Defauit Modifiers

The following modifiers should be specified for each class:
e Update
. Hequest_State_Change
e Create

11.4.3.2 Update

The Update modifier is called periodically to update the state of the instance of the class. The period of
the call is passed in as delta time since the previous update.

11.4.3.3 Request_State_Change

The Request_State_Change modifier serves a variety of purposes. The associated enumeration type
Commands allows the caller of Request_State_Change request that the instance of the class change its
internal state. For example, a valve may allow its position to be changed, or may allow a maifunction to
be inserted.

11.4.3.4 Create

The Create modifier is typically called once upon partition initialization. It serves to allow the instance to
be tailored in some way. In the case of an accumulator object, minimum and maximum pressures and
volumes may be set. Note that the Create operation is analogous to Ada elaboration. Both are done
once upon initialization.

11.4.4 Selector Specifications

Selectors are Ada functions that return the current value of an attribute associated with the object instan-
tiated from that class. Selector names should be in the form of a noun. An example of a selector follows:

function Position (Instance : in Object) return Set.On_Ness:

Again, since one or more instances of the class may exist, the specific instance of the class is passed to
the function. Since a selector cannot change the state of an object, the parameter 'Instance’ is passed as
a read-only parameter using the 'in’ qualifier. The selector returns the position of the switch (on or off).

11.4.5 Textual Description

The textual description of the class are in the form of Ada comments and contain items such asidentifica-
tion, description, author, revision history. Refer to the SSVTF Ada coding standards document for more
informaton.

\ =4

V12 ORIGINAL PAGE 1S
OF POOR QUALITY

11.5 Class Examples

11.5.1 The Accumulator Class

Based on the real-world characteristics of an accumulator as identified in the object oriented require-
ments analysis the atiributes and operations of the accumulator may be listed as shown below.

Attributes Units Operations
Flow Rate Gallons/Second Modifiers
Gas Pressure PSI Create
Gas Volume Cubic Feet Request_State_Change
Fluid Volume Cubic Feet Update_State
Quantity Held Gallons
Minimum Gas Pressure PSi Selectors
Minimum Gas Volume Cubic Feet Flow_Rate
Maximum Gas Volume Cubic Feet Quantity_Held
Minimum Fluid Volume Cubic Feet
Maximum Fluid Volume Cubic Feet

Table 3 Accumulator Attributes and Operations —_—

From this listing of attributes and operations, a class specification (Ada package specification) is created,
as shown in Ada Unit 1 on page V-17.

11.5.2 The Pressure and Quantity Sensor Class

The simulation of the pressure sensor and quantity sensor are very similar in this example. Each sensor:
has an actual and nominal load placed on the electrical system. Each may be failed by the |10S and each
makes the sensed value available. The sole difference between the pressure sensor and the quantity
sensor is the units (i.e. type) of the sensed vaiue (pressure in PSI and quantity in gallons). To take ad-
vantages of these similarities, a generic class is specified. In order to instantiate the generic, the instan-
tiation must supply the specific sensed value type (PS| or gallons) to create a more specific class. For the
purposes of this example, the actual and nominal load type will also be specified as a generic parameter
to the generic class.

Note that in this example the generic sensor class is used to create a new class for the pressure sensor
and a new class for the quantity sensor. While in Ada terms the generic class is instantiated with the ge-
neric actual parameters, an instance of the class in object oriented terms does not yet exist.

Attributes Units Operations
Bias Generic sensed units Modifiers
Load - Generic load units Create

Nominal Load

Generic load units

Request_State_Change

Output Value

Generic sensed units

Update

Sensor Failed

Boolean

Scale

None

Selectors

Elec_Load
Sensed_Output

Table 4 Generic Sensor Attributes and Operations

From this listing of generic attributes and operations, a generic class specification (Ada generic package
specification) is created, as shown in Ada Unit 4 on page V-20.

11.6 The Hydraulic System Partition

The hydraulic system partition is an abstract state machine (ASM) implemented as an Ada package.

The partition can be thought of as the "glue’ or 'smarts' that holds the hydraulic system simulation togeth-
er. ltis at this level that messages are received, interpreted and acted upon. Logic at the partition level is
responsible for routing relevant data to the lower levels. Likewise, the partition must provide data to the
outside world.

11.6.1 Hydraulic System Partition Interfaces

The hydraulic system partition communicates with the hydraulic control panel, electrical system, landing
gear, control surfaces, aural cue and 10S. In this example, the hydraulic control panel partition and the
electrical system partition provide interface definition packages for their respective interfaces. Interface
definitions between the hydraulic systemn partition and the other external systems are provided by the hy-
draulic system partition and maintained in the Hyd_Sys_Intfc_Defn package.

11.6.2 Hydraulic_System_Partition Package Specification

Since the partition does not export (in the Ada ser&e) any operations or data, the content of the partition pack-
age specification is minimal. By SVM convention, all of the partition’s interface definitions, both internal and
external are 'withed’ into the package specification. Although these packages could technically be 'withed'
into the package body, they are 'withed’ here so that the partition’s interfaces become more apparent.

11.6.3 Hydraulic_System_Partition Package Body

The hydraulic system partition package body contains the declarations that allocate memory for the hydraulic
system and instantiates the generic thread executive. Italso creates instances of generic classes and defines
local types.

11.6.3.1 Generic Class Instantiations

Three new classes are created via generic class instatiations. A pressure sensor class and quantity sensor

class are instances of the generic sensor class. Also, a hydraulic reservoir class is instantiated from a generic

reservoir class.
11.6.3.2 Local Type Definitions

Since it is convenient to manage the components of the dual-redundant hydraulic system using two element
arrays, several array types are created. The index for these array types is an enumeration type defined as:
type Sys_1_Sys_2 is (Sys_1, Sys_2};

These array types are used for creating class instances as well as defining data internal to the partition. Note
that since anonymous arrays are not allowed by the coding standards, these array types are necessary to
declare an array.

11.6.3.3 Message Pointers

Each message that is to be sent or received must have a unique identifier. The memory for these identifiers
is allocated (i.e. the data objects are declared) in the hydraulic system package body and are later initialized
in the Create_Data mode routine.

11.6.3.4 Class Instances

Each major comgonent (object) modeled in the simulation is an instance of a class. In Ada terms an object
is created by declaring a data object using the ‘Object type provided by the corresponding class package.
The major components of the hydraulic system are the accumulators (2), distribution systems (2), drive units
(2). isolation valves (2). pressure sensors (2). pumps (2). reservoir and reservoir quantity sensor.

Using the accumulators as an example of dual components, the 'accumulator’ data objectis of the array type
‘accumulators’. The array type 'accumulators’ is declared as:

type Accumulators is array (Sys_1_Sys_2) of Accumulacor_Class.Cbject:
The data object 'Accumulator’ is declared as:

Accumulator : Accumulators;
Using these conventions, the accumulator objects take the form:

System 1 Accumulator: Accumulator (Sys_1)
System 2 Accumulator: Accumulator (Sys_2)

Using the reservoir as an example of a single component, the ‘reservoir’ data object is declared as:

Reservoir : Hyd_Reservoir_Class.Object:

11.6.3.5 Internal Data

Since a partition controls all of the objects contained within it, itis often necessary to create partiion—internal
data to manage the manipulation of of the objects.

This data may include temporary storage of data thatlinks two or more objects. For example, total return flow
is internal data that is computed by summing the return flows from the landing gear and control surfaces as
received in messages from these external systems. The total return flow is |ater used to update the reservoir
quantity.

Internal data may also include identifiers used to heip manage the partition in the simulation environment.
These identifiers include the partition name as a string constant, and the partition ID as a natural number.

A design decision was made to model the motor relays of the hydraulic system intemal to the partition rather
thatcreating a separate relay class due to their trivial nature. This is done by creating the following data object:

Motor_Relay_Power : On_Off_A := (others=> Off);

where On_Off_A has been previously declared as (in the Orve_Common_Types package).
type Oon_Off_A is array (Sys_l1_Sys_2) of Set.On_Ness:

This demonstrates another use of internal partition data.

11.6.3.6 Creating Thread_Exec

Since the partition represents a single executive thread, it mustinstantiate the generic package Generic_Mo-
del.Periodic 10 register the partition name, frequency and all of the partition’s mode routines with the SVM
executive.

ORGINAL PAGE 1g
POOR QUALITY

V-15

Hyd_Sys_Intfc_Defn

L

Hydraulic System Partition

mode routines
Register 1O
Create_Data
Self_Init
System _Init
Run
Hold Elec_Sys_Intfc_Defn

Term thread exsc
- |
éEloc Pﬁ ME ;

class instances |

Distribution System (142)

Drive Unite(1 &2)
Isolation Valves(1&2) Hyd_Control_Panel_Intfc_Defn

Pressure Sensors (1&2)

Pumps(142)
Quantity Sensor X md %
Reservoir =

Dﬂvoﬁljlfit_ctm Sensor_Class

L

T TR

Pymg On
Torque

—
Regueel
| Roqyest Siate Change |
Updaig Update
oW _Ha!
ant
Vaive_Class Reservoir_Class
1 L
Y Creal
Update Update (all packages in this region are
T — & ‘withed into e parttion)

T e —
._&"P._(

Figure 7 Hydraulic Systém Partition

C

v-i6

. . Ada Unit 1 Accumulator_Class Package Specification
S witn 2zi_ZIng_Units;

use 3ti_Zng_Unics:

Faz<age Accumulat:cr_Tiass s

type Jbiect is Limited private;

et Commands for Re-

ryre Tommands is (Iniziallze, No_Pressure};

- Ak wrwranrRACAr A nrnr Modiflorg TAYARREAARARNEAANARCCNEN

procedure Create [Instance : in out Objecrt;
Parent_Name :in String = "*;

Init_Press o+ in Seu.Psi;
Min_Gas_Press : in Seu.Psi;
Min_3as_Vol : in Seu.lubic_Feer;
Max_Gas_Vol : in Seu.Cubic_Feet;
Min_Fluid_Vol : in Seu.Cubic_Feec;
Max_Fluid_Vol : in Seu.Cubic_Feet});

procedure Request_State_Change {Instance : in out Object;

Command : in Commands:
Apply : in Boolean;
Pressure : in Seu.Psi :=

procedure Update (Instance : in out Object;
Pressure in Seu.Psi;

quest_State_Change
procedurse.

Allows instance

4000.0);

constants to be
set.

Used to aperiodically request

y a state change.

Called periodically to update

Delra_Time : in Seu.Seconds) ;

_—— AT RARXAARANNNARTRATNEN seleccOrs (SRR R R RS ERRAARE RS RS S

funcrion Flow_Rate {(Instance : in Object) return Seu.Gallons_Per_Second:

function Quantity_Held {Instance : in Object) return Seu.Gallons;

the state.

Selectors o get state
values maintained by
+—1 object

The list of attributes for this class.
Qutside of this class, these attributes
can be modified only via the given
modfiers and seiectors specified
above. This is enforced by dedaring
the record type as limited private.

ORIGINAL PAGE 1S

p—g private
type Object is
record
Flow_Rate : Seu.Gallons_Per_Second := 0.0;
Gas_Pressure : Seu.Psi = 0.0;
Gas_Volume : Seu.Cubic_Feet = 0.0;
Fluld_Veciume : Seu.Cubic_Feet = 0.0;
Quantity_Held : Seu.Gallons 7= 0.0; @ ————
Min_Gas_Press : Seu.Psi e= 0.0;
Min_Gas_Vol : Seu.Cubic_Feet = 0.0;
Max_Gas_Vol : Seu.Cubic_Feet = 0.0;
Min_Fluid_vol : Seu.Cubic_Feet = 0.0;
Max_Fluid_Vol : Seu.Cubic_Feet := 0.0;
end record;
end Accumulator_Class;
--| Abstract: This package provides a real time simulation of a class
-1 of hydreulic accumulator.
-=1
--! Warnings: None.
X 7

'OF POOR QUALITY

V-17

Ada Unit2 Accumulator_Class Package Body

cackage pod Accumularcor_Class s ’

AR AR AR S SRR SRR R R 2 N AR R R R R AR AR EE R R R R R R NN RY

Repori _Symools (used by lreace;
procedure Repcrt_3ymbols [Instcance v in out Zriecx; tgecglt?:natztadg:s:c;dt;;bT:Es's
Farent_Name : in Scring, is seraracte; into the symbol table. The IOS
EERREAAE N AR R ® Modif;ers (2R 22 R R R R R T RN] heﬂhanreCt(-bad(dOOfu)
access to the attributes.

procedure Zreacte (Instance : 1n out Object:

Parent _Name :in Scring :z **;

Inic_Press : in Seu.Psi;

Min_Sas_Press : in Seu.Psi;

Min_3Gas_Vol :in Seu.Cubic_Feer;

Max_Gas_Vol : in Seu.Cubic_Feer;

Min_Fluid_veol : in Seu.Cubic_Feet;

Max_Fluid_Vol : in Seu.Cubic_Feetc) is

begin
Report Symbols Instance => Instance, Parent_Name => Parenc _Name) ;

Instance.Gas_Pressure := Init_Press;
Instance.Min_Gas_Press := Min_GCas_Press;
Instance.Min_Gas_Vol iz Min_Gas_Vol;
Instance.Max_Gas_Vol ;= Max_Gas_Vol;
Inscance.Min_Fluid_Vol Min_PFluid_Vol;
Instance.Max_Fluid_Vol Max_Fluid_Vol;

Need Zunction here to convert gas pressure to gas volume &
fluid volume

end Create;

. =
\AAS AR AR AL R R R Y R R R R R R R R R R R —
procedure Request_State_Change (Instance : in out Object:

Command : in Commands ;
Apply : in Boolean;
Pressure ; in Seu.Psi := 4000.0) is

begin
" Case Command is
when Initialize =»
Instance.Gas_Pressure := Pressure;

Add function here to determine gas volume & fluid for this new gas
pressure

when No_Pressure =>
null;
end case;
end Request_State_Change;

AR AR AAL A AL AL 22 R 22 20 R 2R RS RE RN Y

procedure Update (Instance : in out Objecct:
Pressure s in Seu.Psi;
Delta_Time : in Seu.Seconds) is

begin
NOTE: This procedure is greatly simplified.

instance.Gas ~“ressure := Pressure;
Instance.Fl:.. 7ace = 0.025;

end Updace:;

=

!it"'t'."';i'!t"." Seleccors LR A AR ESRRS S R] LR] ?

function Flow_Rate (Instance : in Object] rec.rn Seu.Gallons_Per_Second is

‘begin

V-18

C

recurn [pstance.TlTw_Rate;

ernd TlLow_3arte;

J
N Y IR 222 22X R RO X R A AR A SR A A AL A A AR A AL AR A

~czicon Zuantity_Held ‘Instance :oin Tbiect) recurn Jeu.lallons is

rec.rn Instance.suancity_Held:
erd Luant.ty_Hel_o3:

ené Accumulator_Zlass;

Ada Unit3 Accumulator_Class.Report_Symbols Separate Procedure
with 3Jymbol_Map:
separace [Accumulator_Class)

procedure Report_Symbols (Instance : in out Object; Parent_Name : in String) is

begin
-- No symbols to report 10S does not access any attributes of
11 the accumulator class. Report_Sym-
nuL.s - bols can be removed when the parti-
end Report_Symbols; tion is optimized. See the vaive class
for an example of reported attributes.
——| Abstract: This separate reporis symbols to the symbol map.
-1
—-1 Warnings: If no symbols are to be reported, this separate could

-1 be deleced.

ORIGINAL PAGE IS
OF POOR QUALITY

v-19

Ada Unit4 Generic_Sensor_Class Package Specification

s digits <>}

is digilts <>
is digits <>

Lim.zed private;

zyre

Sensor_Incorrect);

The generic formal parameters. The ac-
tual parameters are specified when this
package is instantiated.

The sensor may be com-

~yre Commards 1is ‘3ensor_Faiil,

o ARRR T A RARANANR AR A AN AN Modifiers sk AEEARSRNARNSRR AR IR AERRSY

procedure Create {Instance in out Object:
Parent_Name in String iz "*;
Nominal_Load in Load_Unicts}:
procedure Request_3tate_Change (Instance in out Objecrt:
Command in Commands;
Apply in Boolean;
Scale in Non_Dim_Unics :=
Bias in Sensed_Units =
procedure Update (Instance in out Objecct;
Power_Avail in Boolean;
Sensed_Input in Sensed_Units);

IXZZZZE2 R AR AR RSN selec:ors ISEEXERREER SRR R R AL S

function Elec_Load (Instance in Object) return Load_Units;

function Sensed_Output (Instance : in Object) recurn Senged_Units;

private

type Object is

record
Bias Sensed_Units := 0.0;
Load Load_Units = 0.0;
Nominal _Load Load_Units = 0.0;
Sutput_vValue Sensed_Units = 0.0;
Scale Non_Dim_Units := 1.0:
Sensor_Failed Boolean False;

end record;

end Ceneric_Sensor_Class;

-_| Abstracc: This package provides a real time simulation of a class
-—i of generic sensors.

-—1

-—| Warnings: pragma Inline used in body.

[l

o o

manded to fail or read in-
correctly.

Note that the
remadning por-
tion of the pack-
age spadcifica-
tion is identical

to a normal
{non—generic)
package specifi- -

cation. %

ORIGINAL PAGE 1s &

Y & Q m QUAL'W

V-20

Ada Unit5 Generic_Sensor_Class Package Body

Tazt<aze tody Jener: - _lensor_Class is

-- ZTver.:zaded Iperarlrs

fopecisn Ter TLefz :oin Nen_Dim_Unics;
re-urn Sersed_Units is
regin
recurn (Sersed_vunits (Lefr) +« Right);
end "*7;

cragma Iniine (7"*"}

i

-- Report_Symbols (used by Create)

procedure Report_Symbols (Instance

Parent _Name

P e Y X222 R E R R A A A A A R A A LIS

Right

EXRERT YA AARER O A AN

"t"'lf"""'t't"'l"i'ttfl"tﬁ""."."i'i""t"!l'lt

in out Object;
in String)

__ txnkrexssanvasxvanrwwrvns Modifiers [EXZEREXERRE SRR SRR R0

{Instance
Parent _Name in
Nominal_Leocad : in

procedure Create

begin

Report_Symbols

(Instance => Instance,

in out Object;

String := "*;
Load_Units) is

in Sensed_Units)

is separate;

Parent_Name => Parent_Name);

Instance.Nominal_lLoad := Nominal_Load:

end Create;

end if;

end Update;

v' R ﬁttii"i"l'ttIttt"t"t'tt".l"t"."tt'tt'""ii'i"tﬁ"
procedure Request_State_Change ({Instance : in out Object;
Command : in Commands; Detauit inifaliza-
Apply : in Boolean: fion ailows user
Scale : in Non_Dim_Unics := 1.0; PUS— to only pass in
Bias : in Sensed_Units := 0.0) is necessary data.
begin
case Command is
when Sensor_Fail =>
Instance.Sensor_Failed := Apply: - After next update sensor
will output zero.
when Sensor_Incorrect =>
Instance.Bias := Bias; After next update, sensor will
Instance.Scale := Scale; - output according to this new
end case; e and bias.
end Request_State_Change;
- ""i"'.""'."ltl""""'t"'.".'t"'."'l'."'t"""
procedure Update (Instance : in out Object:
Power_Avail : in Beolean;
Sensed_Input : in Sensed_Units) is
begin
if Power_ Avail and not Instance.Sensor_Failed then Sensor value af-
. fected by values
Instance.Qutput_Value := Instance.Scale * Sensed_Input + Instance.Bias; from Request
Insctance.Lload := Instance.Nominal_Load; State_Change.
else
R Instance.Cutput_Value := 0.0; ml
) — Instance.Load := 0.0; GiNAL PAGE !'S

OF MOOR QUALITY

v-21

I EXZEEEEAR A AL LS AR E SR N Se‘_ec:;:—s ettt ANTRIAT R CEO RN NR

return Lcad_Unics is

finczion Elec_Lcad [Instance : In

ret.rn Instance.lcadl
end Zlec_Load;
"'tttiﬁ'tf"'t"Q""t'tt"tt'tiif.!'iﬁi""it'ti'.'ti""
funccion Sermsed CZutpuf ‘Instance : in Cbhject) return Sensed_lnits is
begin

return (Inscance.lutput_Value):;
end Sensed_Cutpul;

end Generic_Sensor_llass:

Ada Unit6 Generic_Sensor_Class.Report_Symbols Separate Procedure
with Symbol_Map:

separate (Generic_Sensor_Class)
procedure Report _Symbols {Instance : in out Object; Parent_Name : in Scring) is
begin
-- No symbols to report
null;

end Report_Symbols:

--| Abstract: This separate reports symbols to the symbol map.

--{ Warnings: If no symbols are to be reported, this separate could
-=1 e deleted.

ONGINAL PAGE IS
OF POOR QUALITY

v-22

<

JPLLE

el

.

t 7 Elec_Motor_Class Package Specification

Zng_lnics;

A

. a
S
wo €
2

el renarves ng_tnits;

racKkage o 3zd_E
et rerames Std_Eng_Types:

rackage
tyre Cbhbiect is limited private;
zyre Tommands 1s {Moctor_Fail);

—— wwrurrwrrrrrrrrranrnrnnr Modiflierg FAEAARANRANSRALANAGLONSNSY

procedure Create (Instance : in out Object;
Parentc_Name : in String := **7;
Nominal_Speed : in Seu.Radians_Per_Second;
Nominal_Torque : in Seu.Foot_Pound_Force);

procedure Request_State_Change {Instance : in out Object;

Command : in Commands;
Apply ¢ in Boolean) ;
procedure Update {Instance : in out Object;
Torque :+ 1n Seu.Foot_Pound_Force;
Power_Avail : in Boolean) ;

. RRANBANNNRT AR AN AN Seleccors (AARARARAREREREEE DR RS A JES

funczion Shaft_Output (Instance : in Object) return Seu.Radians_Per_Second;

private

type Object is

record
Nominal_Speed : Seu.Radians_Per_Second := 0.0;
Nominal_Torgue : Seu.Foot_Pound_Force = 0.0;
Shaft_Speed : Seu.Radians_Per_Second := 0.0;
Shaft_Fail : Boolean ;1= False;

end record;

end Elec_Motor_Class;

-~ Apstractc: This package provides a real time simulation of a class
-1 of electric motor.

--1 Warnings: pragma Inline used in body.

ORIGINAL PAGE I8
OF POOR QUALITY

v-23

Ada Un

cackasge

Elec _Motor_Class Package Body

Zlass

it8
Tady Tlec _Mocoor_ is

P Y T2 22 XN R R R 2 R A A AR A R A A S A AL SIS

S.pctizr me" Lef:z : Zeu.Radians_Per_Secand; Rig
re-urn Zeu.Radlans_Per_3Second is
segin
return Seu.Radians_Per_Second (Set.Real_6 (Le
.

pragma Inline (7*%;;

?it"'."'ﬁ'""'Q'i"'i'i'ﬁ""'i."""t"'""

Reportc_Symbols (used by Creacte)

in out O
in S

{Instance :
Parent_Name :

procedure Reporc _Sympols

XX ESEZZEE R AR RS AL Modifiers RERERETRANT IO NAN

22 EEEEREER]

fr} * 3Jec.Real

(A2 SRR N RS SS]

bject;
tring}

LA A AR RS SRS

_6

(Right)

is separace;

procedure Create {Instance : in out Object;
Parent _Name : in scring := *";
Nominal_Speed : in Seu.Radians_Per_Second;
Nominal_Torque : in Seu.Foot_Pound_Force) is
begin
Reporc _Symbols (Instance => Instance, Parent_Name

Initialize state to motor off and not failed

Tnstance.Nominal_Speed := Nominal_Speed:;
Instance.Nominal_Torgque := Nominal_Torque:

end Create:

'"ﬁft'l"iti'.iﬁ'i""ﬁ’..'Q'.t'iiii."t""t'i"

procedure Request_State_Change ({(Instance : in ou
Command : in
Apply in
begin
case Command is
when Motor_Fail =>
Instance.Shafc_Fail := Apply:

end case;

end Request_State_Change;
""'Qﬂttttt'tt"!'t""'tt'tt't.t't"tti't'ﬁi't
in out Objecrt;
in Seu.Foot
in Boolean)

proceduyre Update {(Instance
Torque
Power_Avail :
SE_1 : Seu.Non_Dimensional:
begin .
__ Based on torgue load, available power and shaft

if {Torgue <= Instance.Nominal Torque) and
Power_Avail and (not Instance.Shaft_Fail)

Sf_1 :=
else

Sf_1 := 0.0;
end if:

Inscance.Shaft_Speed := Instance.Nominal_Spee

A AZRARSRAA D)

r Object:;
Commands;

Boolean) is

LA R AR RS RS

_Pound_Force;

is

status,

cthen

d » Sf_1:

=> Parent_Name) ;

1.0 - Seu.Non_Dimensional (Torque / Instance.Nominal Torque);

determine shaft speed

v-24

p
i

(

o

o

trrevvcrRERRRRREXCCENAURSY JaloanTors 2R R XSRS RS RE SRR RRE SR

. Shafc_CZuzput (Instance : in Oblect) return Seu.Radlans_Fer _fSesornd is

Ada Unit 9 Elec_Motor_Class.Report_Symbols Separate Procedure
witn Sympol_Map;
separate {Elec_Mctor_Class)

prccedure Report_Sympols {Instance : in out Object; Parent Name : in String) is

-- No symbols to report
null;
end Report_Symbols:

--1 Abstract: This separate reports symbols to the symbol map.

--: Warnings: If no symbols are tc be reported, this separate could
--1 te delered.

ORIGINAL PAGE IS
OF POOR QUALITY '

V-25

Ada Unit 10 Dc_Motor_Class Package Specification

Lec_Motor

pa:kage N
td_Eng_Tni

package

renaves
renames

3

cype Cbilect is limized privace:

rype Commands is (Motor_Failj;

cxanensnrrrrrsrvnbrerer Modifiers

procedure Create {(Instance
Parent_lName
Max_Volcage
Min_Voltage
Nominal _Load
Nominal_Speed
Nominal_Torgque

Class:
ts;

22 X222 RXZRZ XA RS AN

in our Chiect;

in scring := *";

.n Seu.Volts;

. Seu.Volcs;

n Seu.Amps.;

in Seu.Radians_Per_Second;
in Seu.Foot_Pound_Force):

procedure Request_State_Change {Instance : in out Qbject;

Co

Ap

procedure Update (Instance : in
Delta_Time : in

Torgue : in

Avail_Power : in

e RRAREERATANTERN I NT NN SElectors *

function Load (Instcance in Objec
funccion Shafc_Output (Instance
private
type Object is
record

Slec_Load Seu.Amps =
Elec_Motor Em_Cls.Object
Max_Voltage Seu.Volts :=
Min_Voltage Seu.Volts :=
Nominal _Load Seu.Amps =
Power_On Boolean =

end record;

end Dc_Motor_Class;

mmand ¢ in Commands:;
ply : in Boolean) ;
out Object;

Seu.Seconds;
Seu.Foot_Pound_Force;
Seu.Voles);

IT222 22 XXX R 2 &40 0 BN

Class used within this class. The DC
Motor classinherits the attributes and
operations of the Electric Motor class

t} return Seu.Amps:

in Object) return Seu.Radians_Per_Seccnd;
0.0;

0.0;

0.0;

0.0;

False;

-~ Abscract: This package provides
--1 of DC motors based on

--} Warnings: None.

a real time simulation of a class
a simple electric motor.

V-26

C

Ada Unit 11 Dc_Motor_Class Package Body
package body Dc_Motor_Class is

—— AR R AR AR AR A A AR AT TN TR N T AN AR IR ARE TR R I A RR A AR SRR R R RN I RN

—- Report Symbols (used by Create)

procedure Report_Symbols (Instance

: in out
Parent_Name :

in

Object;
String := "") is separate;

—— hk Ak kR A Ak Ak R F R kA bbb R A b r Modifiers FtRARAE KRR RS A AN A AN ARERR IR A AR

procedure Create (Instance

in out Object;

Parent_Name s In String = "";
Max_Voltage s 1n Seu.Volts;

Min_Voltage : in Seu.Volts;

Nominal Load : in Seu.Amps;

Nominal Speed : in Seu.Radians_Per_Second;
Nominal_Torque : in Seu.Foot_Pound_Force) is

begin

Report_Symbols (Instance => Instance, Parent_Name => Parent_Name);

Instance.Max_Voltage := Max_Voltage;
Instance.Min_Voltage := Min_Voltage;
Instance.Nominal_Load := Nominal_ Load;

—— Create electric motor instance

Create provides user spe-
cified constants to the
instance of the DC motor.

Em_Cls.Create (Instance => Instance.Elec_Motor,
Parent_Name => Parent_Name & ~.Motor”,
Nominal_ Speed => Nominal_Speed,
Nominal Torque => Nominal_Torque);

end Create;

—— AR AR A R A R R A R R R R R L AR RS R R S AR R RSS2 RE)

procedure Request_State Change (Instance :
Command : in
Apply t in
begin
case Command is

when Motor_ Fail =>

Em_Cls.Request_State_Change (Instance
Command

Apply
end case;

end Request_State_Change; .

in out Object;

Commands;
Boolean) is

=> Instance.Elec_Motor,
=> Em_Cls.Motor_Fail,

=> Apply):

[AR R R A R R R R A R R R R R R R R R S A R RS R A RS XSRS SRR ERRR)

procedure Update (Instance in out Object;

3
Delta_Time : in Seu.Seconds;
Torque s in Seu.Foot_Pound_Force;
Avail Power : in Seu.Volts) is

begin

-- Motor is operational when power is: (min volts

<= avail_power <= max volts)

Instance.Power_On := (Instance.Min_Voltage <= Avail_Power) and
(Avail_Power <= Instance.Max_Voltage);

—— Determine shaft speed based on power status and torque load

Em_Cls.Update (Instance

Torque => Torque,

=> Instance.Elec_

Motor,

Power Avail => Instance.Power_On});

—-— Return constant load if powered, otherwise return 0.0
—— NOTE: This process could be replaced by a specific function which could
- vary the returned load based on the input voltage, torque load and

- shaft speed.

v-27

if Instance.Power_On then

Insﬁance.!lec_Load
else
Instance.Elec_Load
. end if;
end Update;

e Y2222 2 22 R RS SRR RS A

function Load (Instance :
begin

Selectors

:= Instance.Nominal_Load;

#
(=]
o

in Object) return Seu.Amps is

return (Instance.Elec_Load);

end Load;

ﬁtiﬁﬁ**‘fﬁ‘ﬁ*ﬂi*Qﬁi**iiﬁﬁﬁ*i*ﬁ*t**i***ﬁf*ﬁﬁﬁﬁﬁiiitiﬁﬁﬁiﬁ"'

YRS ESZERS RS R SRR R RN RS A1

function Shaft_oOutput (Ir--=nce : in object) return Seu.Radians_Per_Second is

begin

return (Em_Cls.Shaft_Output (Instance.Elec_Motor));

end shaft_Output;

end Dc_Motor_Class;

Ada Unit 12 Dc_Motor_Class.Report_Symbols Separate Procedure

with Symbol Map:

separate (Dc_Motor_Class)

procedure Report_symbols (Instance
: Parent_Name

begin
null;

end Report_sSymbols;

in out Object;
in string = **) is

PYSP

Shaft_Output is an aftribute of
the Electric Motor class and is
made available at the DC Mo-
tor class via this pass through
selector.

-—| Abstract: This separate

--| Warnings: If no symbols
-1 be deleted.

reports symbols to the symbol map.

are to be reported, this separate could

V-28

G

Ada Un

wWiTn

{Jear_Seizure):

type Tommands [sS

sxrrararnnrnrrnnrcenrsnd Modifiers wrerer

IEEER RS RS R RS R A SN S

procedure Create !(Inscance : in out Object;
Parent_Name : in String := "7
Max_Torque : in Seu.Foot _Pound_Forcej;
procedure Request_State_Change (Instance : in out Object;
Command in Commands;
Apply : in Boolean):
procedure Update {Instance in out Object:
Delta_Time :in Seu.Seconds;
Torgque : in Seu.Foot_Pound_Force;
Supply_Speed : in Seu.Radians_Per_Second);
- ITRZXEEZEEZR RS RS R RS R] Selectors IZX2X22222Z2 2220 0 LA 5 S,
function Torgue_Load {Instance : in Object) return Seu.Foot _Pound_Force;
function Shaft_Output {(Instance : in Object} return Seu.Radians_Per_Second:
privace
&_’; type Obiect is
record
Max_Torque_Load : Seu.Foot_Pound_Force := 0.0;
Torque_Load : Seu.Foot_Pound_Force := 0.0,
Shaft_Speed . Seu.Radians_Per_Second := 0.0;
Seized : Boolean ;= False;
end record;
end Gear_Box_Class;
--i Abstract: This package provides a real time simulation of a class
-=1 of gear box used for transmission of rotation speed.
-1
--1 Warnings: None.
1Y i
"/ ORGINAL PAGE Is

OF POOR QUALITY

V-29

Ada Unit 14 Gear_Box_Class Package Body
ratkage tedy Jear_sox_llass .S
- !'!"'i'tt"".t'*"l"Q'tt'tcltt'ﬁﬁ*ﬁi"t'It"t'i’tt'ttl"'
-- Reporz_3ymbcls [.sed oy CZreate)
o]

cedire Rercrz _3ymkels 'Instance ;o in out Cklecty
parent_Name : in Scring) is serarate;

. ArsATRATA AR RRA NN L Mod.flers S22 2220020 RS R ROl d

procedure Create {(Instance : in oucr Cbjecct;
farent_Name : in 3cring = "7
Max_Torgue : in Seu.Foot_Pound_Force) is

begin
Report _Symbols (Instance => Inscance, Parent_Name => Parent_Name);
Instance.Max_Torque_Load := Max_Torque;

end Create;

- t'wwt't't'ttttti't'tttttttt'ttittt"tttit"i"'ﬁfﬁtﬁttitwiu

procedure Request_State_Change (Instance : in out Object;
Command : in Commands ;
Apply : in Boolean) is
begin
case Command is

when Gear_Seizure =>
Instance.Seized := Apply:
end case;

end Request_State_Change;

- Q"i"t"i"'Q*'tt"t"""tti'Qi'tt""l't"i'..".""ti'

procedure Update (Instance : in out Object:
Delta_Time : in Seu.Seconds;
Torgque : in Seu.Foot_Pound_Force;
Supply_Speed : in Seu.Radians_Per_Second) is
begin

- Based on shaft stac.:, determine shaft speed and torque load
if not Instance.Seized then

Instance.Shafrc_Speed := Supply_ Speed;
Instance.Torque_Load := Torque;

else

Instance.Shafc_Speed := 0.0;
Instance.Torque_Load := Instance.Max_Torgue_Load;

end if;
end Update;

- Y 2222222222222 22222 Rnl) Selec:ors IY2222222222 22222 R ARl

function Torque_Load {Instance : in Object) return Seu.Foort_Pound Force is

begin
return (Instance.Torque_Load);
end Torgue_Load;

- iii'i.""t"t'Q""iiit't'itt'tii"i'."t"i.'l"tiiti't"

funcrion Shaft_cuctpur {(Instance : in Object) return Seu.Radians_Per_Second

vegin
recurn {Inscance.Shaft_Speed):
.end Shaﬁ;=gpt§%;:

end Gear_Box _Class;

Ada Unit 15 Gear_Box_Class.Report_Symbols Separate Procedure

is

V-30

_.. Abscracc: This separate reports symbols to the symbol map.

_—; Warnings: If no symbols are to be reported, this separate could
-- be delered.

ORIGINAL PAGE 1S
~ ' OF POOR QUALITY

V-31

Eng_Tyres:

2
.se 3_Zng_Unitsy

rackasze ~rive_Unic_Class is

package 3er renames std_Eng_Types:
package Seu renames std_gng_Units:

rype Object is limiced private;

Type commands is (Gearbox_Seizure, _- No output from gearbox,
Motor_Faill: -- No output from motor

- tt't-'w'ctqt-att-ittatt Modifie:s tt"."t'!'t’t.l'titt" -

srocedure Create {Instance . in out Object;
parent _Name : in string := "7
Gearbox_Max_Torque : in Seu.Foot_Pound_Force);

procedure Reques:_Scate_Change {Inscance : in out Object:

Command : in Commands:
Apply : in Boolean):
procedure Update (Instance . in out Object:
Avail_Power : in Seu.vVolts;
Deltca_Time : in Seu.Seconds:
Torque : in Seu.Fooc_Pound_Force);

- i‘l"t‘t""'i".t"." Seleccors 't'i'ﬁ.t"*'*t""" -—

function flec_Load (Instance : in Object) return Seu .AmMps

function Motor_On {Instance : in Object) return Roolearn;

function Shaf:_speed (Instance : in Object) return Seu.Radians_Per_Second;
privace

-ype Object is

record

Motor : Dc_Motor_CLass.Objecc: This class con-

Gear_Box . Gear_Box_Class.Object; - sists of more
Motor_Status ger.On_Off := sec.Cff; than one class.

end record;

end Drive_Unit_Class;

-1 Abstract: This package provides a real time gimulation of a class
-—1 of components consisting of an electric motor and a
== gear box.

-—{ Warnings: None.

“ ORIGINAL PAGE 1S
OF POOR QUALITY

V=32

(m“
A,

. ?

Ada Unit 17 Drive_Unit_Class Package Body

package body Drive_Unit_Class is

-— Motor Data from NASA document NASA-9%1-113
-~ Co. Type XYZ-123A Electric Motor~.

Motor_Load
Motor_Max_Speed

t constant Seu.Amps
Motor_Max_Torque :

constant Seu.Radians_P
constant Seu.Foot_Poun
constant Seu.Volts
constant Seu.Volts

Motor_Max_Volts
Motor Min_Volts

v 22X 222222222 R R 2R RS RR SRS SRR RN RS RER]
-— Report_Symbols (used by Create)

procedure Report_Symbols (Instance [
Parent_Name : 1

—— AR kAR R AN AR N E A AR NN AR R RER Modifiers *whww

procedure Create (Instance t in
Parent_Name t in
Gearbox_Max_Torque : in

begin
Report_Symbols (Instance => Instance,

Dc_Motor_Class.Create (Instance
Parent_Name
Max_Voltage
Min_Voltage
Nominal_Load
Nominal_Speed
Nominal_Torque

Gear_Box_Class.Create (Instance =>
Parent_Name =>
Max_Torque =>
end Create;
e 222 E R A RS2SRSS R R R AR R AR RS R A NSR RSN
procedure Request_State_Change (Instance
Command

Apply
begin

case Command is
when Gearbox_Seizure =>

Gear_Box_Class.Request_State_Cha
(Instance => Instance.Gear_BoX
command => Gear Box_Class.Ge

Apply => Apply):
when Motor Fail =>

Dc_Motor_Class.Request_State_Cha
(Instance => Instance.Motor,
Command => Dc_Motor_Class.Mo
Apply => Apply);

end case;

end Request_State_Change;

2 A2 R RS R R R R R R SRR NSRS RS

procedure Update {(Instance : in out Ob
Avail_Power : in Se
Delta Time : in Se
Torque t in Se

—— RN AN AAFAARRAAAF AR RA AN IR NRY Salectors NAREW

5, "Spec for Acme Elec Motor

1= 1.0; .
er_Second := 628.0; —— 6000 rpm Cbssspemﬂcdakause@to
d Force 1= 300.0; create other classes during
= _ ¢ elaboration.

1= 15.0;

1= 8.0;
LA A AR ARE SR SEESES]
n out Object;
n String) is separate;

IEERE R SRR RAS R RS RS E2 R

out Object;
String := "*;
Seu.Foot_Pound_Force) is

Data provided to class during
elaboration to create other
class.

—

Parent_Name => Parent_Name};

=> Instance.Motor,
=> Parent_Name & ".dc_motor~,
=> Motor_Max_Volts,

=> Motor_Min_Volts,
=> Motor_Load,
=> Motor_Max_Speed,

Constant data provided
by class.

=> Motor_Max_Torque);

Instance.Gear_Box,

Parent Name & “.gear_hax<. |

Gearbox_Max_Torque);

Data provided by class
create procedure.

AR R R SR EEEES SRS S A

:+ in out Object;
t in

Commands;
in Boolean) 1is
nge

’
ar_Seizure,

nge

tor_Fail,

—

(22X 2R 2E RS R R4

ject;

u.Volts;

u.Seconds;

u.Foot_Pound_Force) is separate;

(2 A E R EERR R RS2 R 2R R SRR S]

ORIGINAL PAGE IS
OF MOOR QUALITY

V-33

function Elec_Load (Instance : in Object} return Seu.Amps 1s
begin

return (Dc_Motor_Class.Load {Instance.Motor});
end Elec_Load;

e 2 2SR EE XS R R R R RS R R R R AR R R R R AR AR R R R LR R R R REE AR ERES RS EAE

function Motor_On (Instance : in Object) return Boolean is
begin

return (Instance.Motor_Status = Set.On);
end Motor_On;

I R e 2 2 R R R R R A R R R R R R AR ARl AR SRSl ldd

function Shaft_Speed (Instance : in Object) return Seu.Radians_Per_Second is
begin

return (Gear_Box_Class.Shaft_Output (Instance.Gear_ Box});
end Shaft_sSpeed;

end Drive_Unit_Class;

Ada Unit 18 Drive_Unit_Class.Report_Symbols Separate Procedure

with Symbol Map:

separate (Drive_Unit_Class)

procedure Report_Symbols (Instance : in out Object; Parent Name : in String) is
begin

-- No symbols to report

null;

end Report_Symbols;

—-| Abstract: This separate reports symbols to the symbol map.

--| wWarnings: If no symbols are to be reported, this separate could
-1 be deleted.

Ada Unit 19 Drive_Unit_Class.Update Separate Procedure

separate (Drive_Unit_Class)

procedure Update (Instance : in out Object;

Avail_ Power : in Seu.Volts;

Delta _Time : in Seu.Seconds;

Torque ¢ in Seu.Foot_Pound_Force) is
begin

—— Update electric motor

Dc_Motor_Class.Update

{(Instance => Instance.Motor,
Delta_Time => Delta_Time,
Torque => Gear_Box_Class.Torque_Load (Instance.Gear_Box),

Avail_Power => Avail_Power);
~~- Set motor Status flag -
if Avail_Power >= 0.1 then
Instance.Motor_Status := Set.On;
else
Instance.Motor_Status := Set.Off;

end if;

V-34

o

Jear_Zcx_Class.lUpdazte

z => Instance.lear_Bcx,

- => Zeica_Time,

. => Torgle,

3 => DJc_Motor_Class.Shaiz_Cutput [Ins-ance.Moinr;:i;
end Updaze;
-- AcszIract: This fazxkage contains the Drive Unic Class Update
-- procedure.
--. Warnings: None.

ORIGINAL PAGE I8
: OF POOR QUALITY

V-35

Ada Unit 20 Positive_Displacement_Pump _Class Package Specification

ssizive_Displacement_Pump_Tlass s
racxage Seu renares 2cd_FEng_Tinits;
cazxage 3er rerames Std_Eng_Types:
type Cbiect is limitzed private;

rype Tommards is (Set_Efficiency!}:

—— REAATETAEE AR NTER NN Modl ;ers A AA SRS RASE RS SRR RSN E

procedure Create (Instance : in out Objecrt:
Parent_Name : in sScring = o,
Efficiency : in Seu.Non_Dimensional := 1.0;
Number_Cf_Pistons : in Integer:;
Piston_Area : in Seu.Square_Feet) ;
procedure Request_State_Change {(Instance : in out Cbiject;
Command : in Commands;
Apply : in Boolean:
Efficiency : in Seu.Non_Dimensional := 1

procedure Update {Instance : in out Object:
Scroke : in Seu.Feet;
Rotation : in Seu.Radians_Per_Second);

P R 2 EEZE R EEERZARES AR R B Seleccors (AR ZE SRR RS ERERRSRRR R N BN
function Flow (Instance : in Object) return Seu.Gallons_Per_Second:
privatce

type Object is

record
Displacement : Seu.Gallons := 0.0;
Efficiency : Seu.Non_Dimensional := 1.0
Plow_Rate " : Seu.Gallons_Per_Second := 0.0;
Total_fiscon_Area : Seu.Square_Feet := 0.0;

end record:;

end Positive_Displacement_Pump_Class;

--| Abstract: This package provides a real time simulacion of a class
-=1 of a hydraulic positive dispacement pump.

.0);

V-36

)

Ada Unit 21 Positive_Displacement_Pump_Class Package Body

. - L] - - .
razgage zody rosizive _Displacement _Pump_T.2ss 1S

iyTe Sevs_Per_3ecznd 1S new Set.Real_o6;

P X 2 2 X2 s s X AR R R R R AL R A AR AR AR AS AL AL AL AL AL LA LS AN

Tver.-z2ied Zperazors
f.nczion "YT o Lelt ia Seu.3lallons: Right : in Revs_Per_Second)
rezurn Seu.3alleons_Per_Second is

cegin
re-urn {(Seu.3allons_Per_Second {Set.Real_6 !Left) * Set.Real_6 (Right};)
end ***; !
funccion "** {Lef:t : in Seu.Gallons_Per_Second;
Right : in Seu.Non_lPimensional)
recturn Seu.lallons_Per_Second is
begin

recurn (Seu.Gallons_Per_Second (Set.Real_6 (Left) * Set.Real_6 (Right)))

End . hw .

function *** (Left : in Seu.Square_Feet; Right : in Integer)
recurn Seu.Square_Feer is

pegin

recurn (Seu.3quare_Feet {Set.Real_6 {Left) * Set.Real_6 (Right)));

end **~*;

function "** {Lef: : in Seu.Square_Feet; Right : in Seu.Feet)
recurn Seu.Cubic_Feet is

begin

return (Seu.Cubic_Feet {Set.Real_6 {Left) * Sect.Real_6 (Right)]});
end "**;
pragma Inline 7"**};
R R R 22X 22222222222 R 222 2222 2R 22222 R AR R ARl e Rl
Report_Symbols (used by Create)

procedure Report_Symbels (Instance : in out Object;
Parent_Name : in String) 1s separate;

IZE RS2SRRSR RS RRERSA Modifiers ISR 223222222222 22 2R RSt sl

procedure Create (Instance : in out Object;
Parent _Name ¢ in string HERRAS
gfficiency : in Seu.Non_Dimensional := 1.0;
Number_ Of _Pistons : in Inceger;
Piston_Area : in Seu.3quare_Feet) is

begin

Report _Symbols (Instance => Instance, Parent_Name => Parent_Name) ;

Inscance.Bfficiency := Efficiency:
Instance.Total Piston_Area := Piston_Area * Number_Of _Pistons;

end Create;

P R R R R s X2 XX R X2 RS A2 222 22 A2 RAR AR A AR S AL AA

procedure Request_State_Change

{Instance : in out Object;

Command : in Commands ;

Apply : in Boolean:

Efficiency : in Seu.Non_Dimensiocnal := 1.0) is

begin

case Command is oa‘G'NAL PAGE 's
when Set Efficiency => OF POOR QUALITY

V=37

- !rttﬁ'ittvqiv.tt"f.ttnttt"-ttQ""""ttttiwtitttttttt'wnt

przcedure Update [Instance : in out Object:
Stroke :in Zeu.Feet;
Rotation : in Seu.Radians_Per _Second; is
Speed _Rps : Revs_Per_Second;

Cispiacement _Frt_Cubed : Seu.Cubic _Feer;
begin
B

_- calculate Displacement in ga -ns (1l gallon = 0.133681 cubic_feet)

inscance.Displaceme- :=
seu.Callon. {{Ins ce. 1_Piscon_Area * Sctroke) / 0.133681);

_- Convert rotatic o re. _per_. ..ond ->
-- rps = (rads/sec; * (1l rev/ 2{pi) rads)

Speed_Rps := Revs_Per_Second {Rotation * 0.159155);
—— Based on displacement, rotaional speed, and efficiency, determine flow

Instance.Flow_Rate :=
{Instance.Displacement * Speed_Rps) * Instance.Efficiency:;

end Updace;

R TEZ 222X EA R R A A A0S A Selectors 2222222222222 2 222 R AR R RAllhal

function Flow (Instance : in Object) return Seu.Gallons_Per_Second is
begin

recurn (Instance.Flow_Rate);
end Flow;

end Positive_Displacement_Pump_Class:

rate

Ada Unit 22 Positive_Displacement_Pump_Class.Report_Symbois Separate Procedure

with Symcol_Map:

separace (Positive_Displacement_Pump_Class)

prozedure Report_Symbols (Instance : in out Object; Parent_Name : in String) is

begin
-- No symbols to report
null;

end Report_Symbdols:

-—| Abstract: This separate reports symbols to the symbol map.

-—1 Warnings: If no symbols are to be reported, this separate could
--1 be deleted.

ORIGINAL PAGE IS
OF POOR QUALITY

v-38

cackage Ax.z. P.szon_PuTp_l.ass is

er renames ST
eu renames 3t

rype Object is limited privace;

d_Eng_Types:
d_Eng_Units;

cyre Commands is (Mcdify Efficiency, Set_Delta_Flow) ;

e AR ARANERANRE AT AT RN D AN Modifiers XX SRR LRSS A]

procedure Create (Instance
Parent _Name

Number _Of _Pistons : in

Piston_Area

precedure Request_State_Change
(Instance in out
Command : in
Delta_Flow : in
Efficiency : in

procedure Update {(Instance
Press
Rotation_Rate
Stroke .

- S22 22222 222222222200 selecr_ors
function Flow {Instance
function Pressure {Instance : in
function Torgue {Instance

private

type Cbject is

in out Cbject;

in string := *%;
Integer:
: in Seu.Square_Feet] ;

Object:

Commands;
Seu.Gallons_Per_Second
Seu.Non_Dimensional i=

"
- O
a o

= wy

in out Object;

in Seu.Psi;

in Seu.Radians_Per_Second:;
in Seu.Feet);

RAXNEXNEAARRAARTRANENSY

in Object) return Seu.Gallons_Per_Second;

Cbject) return Seu.Psi;

in Object) return Seu.Foot_Pound Force:

Commands used to
modify state data with Re-
quest_State_Change.

Request_State_Change
to provide melfunction and
reset capability.

Use of another class within

record
Bias . Seu.Gallons_Per_Second := 0.0;
Delta_Flow : Seu.Gallons_Per_Second := 0.0;
Flow : Seu.Gallons_Per_Second := 0.0;
Loss_Flow Seu.Gallons_Per_Second := 0.0;
PA_Pump Positive_Displacement _Pu _Class.Object; ¥
Pressure Seu.Psi = 0.0;
Scale : Seu.Non_Dimensional =1.0;
Torgque Seu.Poot _Pound_Force = 0.0;

end record:;

end Axial_Piston_Pump_Class:

-~| Abstract: This package models a hydraulic pump which uses an
--1 axial piston arrangement to generate hydraulic pressure
-—1 pased on rotational speed.

--1 Warnings: None.

ORIGINAL PAGE I8
OF POOR QUALITY

this class.

V-39

Ada Unit 24 Axial_Piston_Pump_Class Package Body
zazkzjze body Axia._fiszon_Sump_Ciass s

P Q'.hwtt'ett"'.t"tt't'tgwﬁﬁﬁt'ti'itt«ittQtlttlt"'t'ltt'nt

fupcTiorn e ‘Lafs : in Zeu.Non_Dimensicrnal;
3.3nT : in Seu.Sallons_Per_sSecond;
verurr Seu.3lallons_Per_Seceord is
pegin
recurn {Seu.lal.ons_Per_Second (3er.Real 6 (Right) * Set.Real_6 (Left))):
end "
function "** {Lef:t : in Seu.Non_Dimensional; Right : in Seu.Psi)
recurn Seu.Psi is :
begin
return (Seu.Psi (Set.Real_6 (Right} * Set.Real_ 6 (Left)));
end **";

pragma Inline ({"**};
— ht*'t-t'tt'ttttttttQt'ttn"ttt"t'd-tiitt-tfii*t*'t’ﬁttita't'
-- Loss Flow Rate Function

function Calc_Loss_Flow {(Pressure : in Seu.Psij;
Flow_Rate : in Seu.Sallons_Per_Second)
recurn Seu.Gallons_Per_Second is

Flow_Sf : Seu.Non_Dimensional;

begin
__ Need funcrion here to produce the following flow_sf‘s:
- Press Flow_sf _
-- 400.0 0.001 %
-- 1680.0 0.01
-— 2800.0 0.10

_- NCTE: For now, use hard coded value of 0.05 (5% loss)
Flow_Sf := 0.05;
recurn (Flcw_3f * Flow_Race};
end Calc_Loss_Flow;
— t'tﬁ"t"'.'"t"'t"i"'iiiﬁiﬁt'ti""'#ﬁ'tﬁ"t""'.""l
-- Calculate Torgue Function

function Calc_Torque (Speed : in Seu.Radians_Per_Second;
Flow : in Seu.Gallons_Per_Second)
return Seu.Foot_Pound_Force is
begin
__ Need some sort of function to obtain torque based on flow rate & speed.
-- For now, use constant value.

recurn (15.0):
end Calc_Torque:
[iti"it."'Q'Q."'i""'..'f.t"t'tt.'tittttttti'i"t"'l"'
-- Report_Symbols (used by Create}

procedure Report_Symbols (Instance : in out Objecc;
Parent_Name : in Scring := "*) is separacte;

P TSRS AR S R AR AN S Modifiers S22 222222002 2R 2 RR Rt dll)

procedure Create (Instance : in out Object;
Parent _Name : in string := *";
Number_Cf_Pistons : in Integer:;
Piston_Area : in Seu.Square_Feet) is

begin

Report_Symbols (Inscance => Instance, Parent_Name => Parent_Name);

ORIGINAL PAGE IS

v-40 OF POOR QUALITY

Creats performed for

ToSL -ve_:xs?;a:eﬁe::_P;mp_Class.:rea:e
Instance => Tastance.ri_Tutp,
Tarent_Name => Parent_Name % *.FD_fumg”, -
vumber Lf_Tistens => Numper _Of_Plstons,
r.sTon_Area => fiston_Area’;

=

vl

Treate;

e T e N R R R R R R R E AL S AR A LA AL LA AL AL RAI A A

croIeiure Request_state_Thange

.Irstanze : in out Chlect:

Ccmmanrd i in Commands ;

Celta_Flow : 1n Seu.Gallorns_Per_Second :z 0.0
Efficiency : 1in Seu.Non_Dimensional = 1.0

begin
-sase Command is
when Modify_Efficiency =>

Positive_Displacement_Pump_Class.Request_State_Change

(Instance => Instance.Pd_Pump,
Apply => True,
Command => Positive_Displacement_Pump_Class.Set_Efficiency,

cdass contained within
this dass.

—| Maitunction passed to
class contained in this

Efficiency => Efficiency): class.
when Set_lDelta_Flow =>
Instarce.Delta_Flow := Delta_Flow:
end case;
end Regquest_State_Change;
.t'tl'.tiQtt'it.'t.t'ttl'i""i'l"t"'!."t"."ii'it"".
procedure Update {Instance : in out Object;
Press : in Seu.Psi;
Rotation_Rate : in Seu.Radians_Per_Second:;
Stroke : in Seu.Feetc) is
Loss_Flow : Seu.Gallons_Per_Second:
pegin
Calculate pump riow based on stroke and speed. Calculace loss flow
pased on pump flow and system pressure. Total flow rate consists of
pump flow minus loss flow plus any IOS commanded flow delta.
Positive_Displacement_Pump_Class.Update (Instance => Instance.Pd _Pump, e Update other dlass
Stroke => Stroke, from within this
Rotacion => Rotation_Rate); class.
Instance.Flow := Positive_Displacement_Pump_Class.Flow (Instance.Pd_Pump):;
Loss_Flow := Calc_Loss_Flow (Pressure => Press,

Flow_Rate => Instance.Flow);

Instance.Plow := Instance.Flow - Loss_Flow + Instance.Delta_Flow, e

Determine torque from total flow rate.

Instance.Torque := Calc_Torque

{Speed => Rotation_Rate, Flow => Instance.Flow);

Output pressure equals input pressure.
instance.Pressure := Press;
end Updarte;

RrrarrwRkaransRnenanNk Selecrors IZXZE2 2SR RSREA RS R ENS

function Flow {(Instance : in Object) return Seu.Gallons_Per_Second is

begin
return (Instance.Flow);
end Flow:

."""l"".'"""'i"ti""""t""'t't".".'l"'.'t'.

Use state data from other class
to calculate state data for this
class.

PR— Function returns

cdass state data

- ORIGINAL PAGE IS
OF POOR QUALITY

V—41 cfj'

zTell] rSeIurn zeu.rs.L 1S Gr——— N Funcﬁon returns
class state data

R X s R X2 R 22 R R R A A A S A AR AL A SR ALAS LA G A

o
a

function Tor3ue [Instance : o inm Object) return Seu. _POUNd_FOrse 1S qu————— Function rewms
tegin
gin ‘ class state data
return Instance.Torgue;
end Torg.e;

"y

[else)

erd Axial_rfiston_Pump_Class:

Ada Unit 25 Axial_Piston_Pump_Class.Report_Symbols Separate Procedure
with Symbol_Map;
separate (Axial_Piscon_Pump_Class)

procedure Report_Symbols (Instance : in out Objec:;
Parent _Name : in Sctring := *") is
begin

~- No symbels to report
null;

end Report _Symbols;

--1 Warnings: If no symbols are to be reported, this separate could
-1 be deleted.

ONGINAL PAGE 18
V-2 OF POOR QUALITY

catkaze Actuazor_Class |s

razxase Seu renames 3T
Std_

racXage 3Set renames

[]

ng_ Units;
ng_Tyres:

cyre Objecr is limited privace;

type Commands (s fSet_Leak);

—— xxaxrurxuaxrxrvearsx Modifiers

Unit 26 Actuator_Class Package Specification

IEEZEXEZS RS R AR AR AR R LR SRR S AN S

procedure Create (Instance : in out Object; Parent_Name : in String

procedure Request_State_Change (Instance : in out Cbject;
Command ¢ in Commands;

Leak_Rate : in

procedure Update (Instance + in out Object;
Delta_Time : in Seu.Seconds:
Pressure : in Psi);

L xmRRRNTNRNARARRRRRRNRROSNS SolacUors THAATEAAAAARTOARINRNEINST __

funczion Stroke {Instance

private

in Object) return Seu.Feer:

type Inches_Per_Second_Squared is new Set .Real_6:

type Objecc is

record
Leak_Rate
Spool_Force
Friction
Spring_rorce
Accel
Velocitcy
Position_Lim
Swash_Plate_Angle
Scroke

end record;

end Actuator_Class:

Seu.Gallons_Per_Second

Seu.Pounds_Force
Seu.Pounds_Force
Seu.Pounds_Force

Inches_Per_Second_Squared

Seu.Feet_Per_Second
Seu.Feet
Seu.Radians
Seu.Feet

e we se we
1]

[« NeoNeolNolNoNeNeNeNe)
v Ne we e %e Ne e ma e

"
[sWeolNeolNelNeNeNe Ne o]

--1 Abstract: This package provides a real time
--1 of hydraulic actuators.

~-} Warnings: None.

V-43

e

Seu.Gallons_Per_Second);

ORIGINAL PAGE 18

-~ NCTE: Operat

-- NCTE: Or:

Ada Unit 27 Actuator_Class Package Body

sgagze oody AcTuatIiT_

~.lass _S

tt't'-t't:'tQ-tiii'tﬁ'tQtttt'i-'ttit'ti'iiittit't't—ioittnf

"l"t"ii'il’tl't'
prccedure CTreate {I
regin

Report_Sympols |
end Create;

i"tii"'.'ﬁ'."it'

grocedure Calculace
pegin

null;
end Calculate_Spool
it’itﬁﬁitii""i*tt
procedure Calculace
regin

@ by Create]

rzcedure Repc::A:yr::Ls .lnstance : in out CThoect:

carent Name : in String! is separate;

Modifie:'s i"tt*'ii'f.ti.tttii!lfiit'tl

nscance : in out Cbiject: Parenc Name : in String

Tnstance => lnstance, Parent _Name => Parenc_Name) ;

'ﬁ""it'i"'t.t't""i"fﬁﬁ"""’i"'

_Spool_Force (Instance : in out Object) is

ional details have been omitted.

_Force;

"iﬁ"*.iitiﬂ*""tﬁ'ﬁ"iﬁ'ﬁ.t.t"ii"'

_Accel (Inscance : in out Object) is

NOTE: Operational decails have been omitted.

null:
end Calculate_Accel

""'it.""t'tt"'

procedure Calculate

;

i'ﬁ'"ﬁ"i"'"'.""'tﬁ'i*i't""it".

_Friction

‘Trnstance : in out Object; Press_Input : Seu.Psi) is

pegin

nuil;
end Calculate_Frict
"ii'l"tttl'ttt.'i

procedure calculate
pegin

snal details have been omitted.

ion:

"t"ﬁ.'t'i"i"."Iitt*ttttﬁf"'t.".'

_Velocity (Instance : in out Object) is

NOTE: Operational details have been omitted.

null;
end Calculate_Veloc

'."'t"'..'."""

procedure Calculate
pegin

5

icy:

't"t""'""tl'"'Q"'itt"t"."ﬁ'.'

_Position (Instance : in out Cbject) is

-- NOTE: Operatiocnal de: ‘1s nave been omitted.

- NQTE:

null;
end Calculate_Posit

.ﬁtﬁ"t""i'-l"i'

procedure Calculate

begin ip
EAt I

ion;

.Q't"'it"tt'.'i"'i'il"'iiﬁ*ii"".'

_Swash_Plate_Angle (Instance : in out Obiect)

Opegie@onal derails have been omitced.

is

V-44

-i Tal-.late_Swasn_Plate_Angle;

1
P X 2 2 2 A X 2 R R SRR R R A AR A AR A AR R AR A AR AR AR LRI AL LA

fa.culate_3troke (Instance : in out Tbhlect] is

-~ NCTZ: Cperazicral dezails have bpeen omitted.

SR R 2222222 22222 2 XA R AR RA SRS R RAR SRR AR RN R RS REEEE)

pcrocedure Calzulaze_Ad-ustment_Spring {(Instance : in out Object) is
begin

-- NOTE: Operational derails have been omitted.
null;
end Calculate_Adjustment_Spring;

P Y 222X 22 2222 2R R 2R R R R R AR RS AR ER SRS Rd)

procedure Request_State_Change (Instance i in out Object;
Command : in Commands .
Leak_Rate : in Seu.Gallons_Per_Second) is
regin

case Command is
when Set_Leak =>»
Inscance.Leak_Rate := Leak_Rate;
end case;

end Request_State_Change;

(

J— R R R A R 222222222222 X2 2222222222 R AR R R R0 00

procedure Update (Instance : in out Object;
Delta_Time : in Seu.Seconds;
Pressure : in Psi) is

Total_Force : Seu.Pounds_Force;

begin
Calculate_Friction (Instance => Instance, Press_Input => Pressure) ;
Calculate_Adjustment_Spring (Instance => Instance};
Calculate_Spool_Force (Instance => Instancej;

Total_Force := Instance.Spool_Force -
Instance.Spring_Force - Instance.Friction:

Calculate_Accel (Instance => Instance);
Calculate_Velocity (Instance => Instance};
Calculate_Position {Instance => Instarce);
Calculate_Swash_Plate_Angle (Instance => Instance);
Calculate_Stroke {Instance => Inscancej;

end Update;

L RARAREXAXRARRNRRNCRINAONSY Saleclors FrHFrssrnevsvesneey

function Stroke (Instance : in Object) return Seu.Feet is
begin

return {(Instance.Stroke);
end Stroke;

K_,; end Acruator_Class;

Ada Unit 28 Actuator_Class.Report_Symbols Separate Procedure

L V45 ONGINAL PAGE 18
L : OF POOR QUALITY

sut Skiect;

This separate reports symbols to the

If no symbols are to be reported,
ce deleced.

this separate could

ORNGINAL PAGE IS
OF POOR QUALITY

(

catxage Centriiugal_Pump_Tlass is

cazxage Feu remames 3td_Eng _Unics;
razkage Set renames Std_Eng_Types:

type Object is limited private;
IEEZZ 22 ER RS R RS AR AR N S Modifiers L EAREEE R AR SRR RRRERDSS -
procedure Create {(Instance : in out Object; Parent_Name : in String);

procedure Update {Instance in out Cbject;

Delta_Time in Seu.Seconds;
Supply_Speed : in Seu.Radians_Per_Second;
Fluid_Avail : in Boolean;

Consumed_Flow : in Seu.Gallons_Per_Second) ;

FXRRXNTAANENSRRRANICININ Solacors PRI FAarraddvarvey

funcrion Torque (Instance : in Object) return Seu.Foct_Pound_Force;
funccion Pressure {(Instance : Object) recurn Seu.Psi;

function Consumed_Flow (Instance : Object) return Seu.Gallons_Per_Second;

private

type Object is
record
Torque : Seu.Foot_Pound_Force 1=
Press : Seu.Psi
Flow : Seu.Gallons_Per_Second
end record;

Centrifugal_Pump_Class:

Abstract: This package provides a real time simulation of a class
of hydraulic centrifugal pumps which pressurize fluid
based on input shaft rotation speed.

Warnings: None.

ORGINAL PAGE Is
OF POOR QUALITY

= V47

Ada Unit 30 Centrifugal Pump_Class Package Body <

v

ca-<age zody CZentrifugal _Pump_Tlass ls

-— tt'ittn'.ttt""ttt"'ttlt'lwita'ttQtt't"ﬁttttttttt'ttta't

-- Rererz 3ymeels L used by Create)
biecz;

crocedure Repcort_3ymkols [Instance 1 in out b
ring := "%, is separace;

Parent_Name : in

s

-
32

IS EZ 2 ER2E SRR R R ERS RS de-flerS (I ZEE RS R R RS R AR RSl ESRE]
crocedure Create [Instance : in out Oblect; Parent_Name : in Scring} is
zegin

Report_Symbols [Instance => Instance, Parent_Name =-> Parent_Name};
end Create;

.iQ"ﬁQ'!"'"'""Q'"'.QQ."'ﬁ"'Clﬁitfl’ﬁ""tt""'t"."

procedure Update {Instance : in out Object;
Delta_Time : in Seu.Seconds;
Supply_Speed : in Seu.Radians_Per_Second;
Fluid_Avail : in Boolean;
Consumed_Flow : in Seu.Gallons_Per_Second) is
begin

-- Set flow rate consumed for output
instance.Flow := Consumed_Flow;

-- Function needed to convert supply speed, fluid availabilicy and
-- delta time into pressure.

Instance.Press := 0.0;

-~ Function needed to convert supply speed, fluid availability and
-- delta time into torque.

Instance.Torque := 0.0;
end Updace:

e RARERARERNN A A AR RN NETERREN Selec:ors 2222222222222 R0 E A EARS

function Torque |Instance : in Object) return Seu.Foot_Pound_Force is
tegin

return {Instance.Torque):
end Torgue:;

J— "t.'ttii"iitt.Qtt'ti'l’t.i."".'Qt"'t'"'tt'*'t""""'

function Pressure (Instance : Object) recturn Seu.Psi is
begin

return {(Inscance.Press):
end Pressure;

J— t'.Q'"".."""""...""tff.t."i""ttt'."t'lt""'t'l

function Consumed_Plow (Instance : Object) return Seu.Gallons_Per_Second is
begin

recurn (Inascance.Flow);
end Consumed_Flow;

end Centrifugal_Pump_Class:

Ada Unit 31 Centrifugal_Pump_Class.Report_Symbols Separate Procedure
with Symbol_Map:
separace (ggncrgfugal_Pump_Class)

précedure Report_Symbols {Instcance : in out Object; ’ ?
Parent_Name : in string := **) is
begin

ONGINAL PAGE IS

V-8 OF POOR QUALITY

(

- Azss-Tict: Ta.$ S€paralée reports syTEols Ko the symbor map.
- Nar—m.ngs: .f no symbols are to bte repcrted, this separazte zouid
-- zce deleced.

ONGINAL PaGE g
OF QUALITY

V-49

Tump _Z13ss;
L _Purp_llass;:

raskage Hydraulic_fump_Class is
package Set renames Std_Eng_Types:
package Seu renames 3td_Eng_Unics;
type Cbject is limitzed privace;

cype Commands is (Compensator_Fail, --
Modify _Flow_Racte, --
Pump_Fail); -

Erractic pressure flow from pump
Scale pump flow rate
Ne flow when pump is driven

2222222222222 X2 A 0000 AS Modifiers (22 R22ARARAARAARRAEEESN]

procedure Create {(Instance in out Cbiect; Parent_Name in String

")

proced.re Request_State_Change {Instance :

in out Object;

Command in Commands:

Apply in Booiean;

Bias : in Seu.Non_Dimensicnal := 0.0:

Scale in Seu.Non_Dimensional := 1.0):

procedure Update (Instance : in out Object:

Delta Time in Seu.Seconds; 7
Fluid_Avail in Boolean; %
Shaft_Speed in Seu.Radians_Per_Second;
System_Pressure in Seu.Psi);

[ZE2ZXEREZR 2R SRR R AR RS Selectors AN bR bARNETIRSE

funcction Consumed_Flow {Instance in Object) return Seu.Gallons_Per_Second;

funccion Dutput_Flow (Instance : in Cbject) return Seu.Gallons_Per_Second:;

function Pump_On {Instance : in Object) return Boolean;
funccion Torgque (Instance in Object) recurn Seu.Foot_Pound_Force;
private
type Object is
record

Actuator : Actuatcer_Class.Object: ,
Axial_Pump : Axial Piston_Pump_Class.Object; P ;h:.c‘l;‘::'uses
Centrifugal Pump Centrifugal_Pump_Class.Object; dasses.
Compensator_Fail Boolean 1= False:;
Consumed_Flow Seu.Gallons_Per_Second := 0.0:
Flow_Bias Seu.Gallons_Per_Second := 0.0;
Flow_Qut Seu.Gallons_Per_Second := 0.0;
Flow_Scale Seu.Non_Dimensicnal = 1.0;
Press_Delta : Seu.Psi = 0.0;
pump_Sensor_Failure : Boolean = False;
Pump_Scactus : Sec.On_Off = Off;
Random_Id Random.Handle;
Shafr_Fail Boolean := False;
Shafr_Speed Seu.Radians_Per_Second := 0.0:
Torgque Seu.Foot _Pound_Force = 0.0;

end record; N

end Hydraulic_Pump_Class;

Abstracc: This package provides a real time simulacion of a class
of hydraulic pumps composed of an axial piston pump, an

OAIGINAL PAGE IS
OF POOR QUALITY

V-50

- Warrings: pragma .nllne used Ln cody.

ORQINAL PAGE 18
CF POOR QUALITY

V-51

Ada Unit 33 Hydraulic_Pump_Class Package Body
caskage cody Hydrauli:z_PuTp_Tlass is '

ar MASA-3L-.075L, "Spez for Acme Hydraulls PurT

2ump”.

Trom MASA docu
abc-4%kt Hydrau

consTant Integer 1z 6
sonstant 3eu.3lguare_Feet := S.4541

(]

=

U

o
;o o-= 17 diam

Y 2 A X R RS R ER AR AR 2 A0 AR S RS AR AL R RS RS EE LSS

-- gver.caded Cperators

(2

anccion **~ {(Left : in Seu.Non_Dimensional;
Right : in 3eu.Sallens_Per_Seccond)
recurn Seu.dallons_Per_Second s
begin .
recurn Seu.Jallons_Per_Second {Set.Real_6 (Left) * Sec.Real_6 {(Right}}):
end ***;

in Seu.Psi; Right : in Seu.Non_Dimensional)

function "** (o
n Seu.Psi is

Lef
recu

begin

re-urn Seu.Psi [(Set.Real_6 Lefr) * Set.7eal_6 (Right)}:
end "7

pra; .nline [**7);
—_— P 2 A 2222222222222 R 2 R RS R R R R R R AR AR RS AR SR AR RARS D
-- Report_Symbols {used by Create)

procedure Report_Symbols {Instance : in our Object;
Parent_Name : in String) is separacte;

P Z X XEEEEERES R AR RR R S RAAS Modifiers IS XX RE 2222220 RRS 2R AR RS
procedure Create (Instance : in out Cbject; Parent Name : in String := **) is
begin
Report_Symkols [Instanze => Instance, Parent_Name => Parent_Name) :

Actuazor_Class.Zreate Instance => Inscance.Actuator,
Parent_Name => Parent_Name & *.accuat”};

Axia. .scon_Fump _Class.Create
{Instance => Instance.Axial_Pump,
Parent _Name => Parenc_Name & *.axial_pump”
Number Of _Pistons => Num_Of_Pistons,
Piston_Area => Single_Piston_Area):

Centrifugal_Pump_Class.Create (Instance =» Instance.Centrifugal_Pump,
pParent_Name => Parent_Name & ".cent_pump”};

Random.Initialize (The_Handle => Instance.Random_Id}:
end Create;

- I R R R X 2222222222222 2222 2 R R R AR R AR SRR R AR AR AL ALAAS]

procedure Request_State_Change (Instance : in out Cbject;
Command : in Commands;

Apply : in Boolean:;
Bias : in Seu.Non_Dimensional := 0.0:
Scale : in Seu.Non_Dimensional := 1.0) is
begin
case Comrand is
when Compensator_Fall =>
Instance.Compensa:>r_Fail := 3

when Modify_Flow_Rate =>

Inscance.Flow_Scale :z Sca’
Instance.Flow_Bias := Seu 5_Per_Second (Bias):

ORIGINAL PAGE I8
v-52 OF POOR QUALITY

(

et Tequest_State_Change;

e s 2 22 X2 XX F R RS RS AR R R R R A S AR A R A A A A AL A S A AL A A

procesure Tpdate Instance : in out Chkject:
Ceita_Time : in Seu.3ecords;
Fluoid_Avall : in Boolean;
Srafc _Speed :oin Seu.Radians_Per_Second;

System_Tressure : in Seu.Psi) 1s serparate;

A AEHARAIRA A RN AN THUBRARARNNTANEN D] @CLOrS TATFTNARAN T AANANNAAE NN

funccion Consumed_Flow (Instance : in Object)
return Seu.Gallons_Per_Second is
pegin

recurn Centrifugal_Pump_Class.Consumed_Flow {Instance.Cencrifugal Pump);
end Consumed_Flow; R

I'"""."ii"t"."'t"""."t"""'Q't""it"t"""'

funccion Output_Flow {Instance : in Object) return Seu.Gallons_Per_Second is
begin

recuyrn {Instance.rlow_Out]);
end Cutput_Flow;

u— "l"t!""""I"'ﬁ"l'""t""'..'"""*'i"i"t"""'

funcrion Pump_On (Instance : in Object) return Boolean is
begin

return {(Instance.Pump_Status = Set.On):
end Pump_On;

"i"'!li".'""'t"t"."'!"t""""t".""""'l'.i"

funcrion Torque [Instance in Object} return Seu.Focot_Pound_Force is

begin
recturn (Instance.Torque};
end Torgque;

end Hydraulic_Pump_Class;

Ada Unit 34 Hydraulic_Pump_Class.Report_Symbois Separate Procedure
with Symbols:
separate (Hydraulic_Pump_Class)

procedure Report_Symbols (Inscance : in out Object: Parent_Name : in Scripg) is

begin
Symbols.Register (Name => Parent_Name & ".Flow_Qut”’,
Base_Type => Symbols.Real
Tick_Address => Instance.Flow_Out'Address,
Tick_Size => Instance.Flow_Out’'Size):

end Report_Symbols;

-~ Abscract: This procedure reports the flow attribute of the
--1 hydraulic pump class to the symbol map.

Ada Unit 35 Hydraulic_Pump_Class.Update Separate Procedure

Vv-53

inoTuT TZTest
Se _ Lo Sev.lezonds; »
Fliid_Avail ;oin 2sclean;
Sraft_3Sreed ¢ in Fevs.Radlans _Fer_Second;
Jygrem_Pressure : in Zeu.%si. is
zegin
.- Sererm.re srat: sreed pased on suppled shaft speed and shafit scatus.
if not Instance.3hait_Fail then
Instance.3hafr_Sreed := Shaft_Speed:
else
inscance.Shaft_Speed := 0.0;
end Lif;
-- Update Centrifugal Pump
Centrifugal _Pump_Class.Update
{Instance => Instance.Centrifugal_Pump,
Delza_Time => Delta_Time,
Supply_Speed => Instance.Shaft_Speed, t’mp gab““::'i:“; :::3;2':‘
Fluid_Avai:l => Fluid_Avail, pu

.) of state fr er class.
Consumed_Flow => Axial_Piston_Pump_Class.Flow {Instance.Axial_Pump)); tate from other clase

-— Calculate pressure difference between scavenge pump output pressure and
-- system pressure. Include effects of pressure compensator failure (if

-- required).
Instance.Press_Delta := System_Pressure - Centrifugal_Pump_Class.Pressure
{Instance.Centrifugal_Pump);
if Inscance.Press_Delta <= 0.1 then %

Instance.Press_Delta :=z 0.0;
end if;
if Instance.Compensator_Fail then

Instance.Press_Delta :=
Inscance.Press_Delta *
Seu.Non_Cimensional (2.0 * Random.Flocatr_Value (Instance.Random_Id));

end if;

—- Update pressure compensation actuator

Aczuator_Class.Update (Instance => Instance.Actuator,
Delta_Time => Delta_Time,
Pressure => Instance.Press_Delta);

-- Update Axial Piston Pump

Axial_Piston_Pump_Class.Update
(Inscance => Instance.Axial_Pump,
Press => Instance.Press_Delta,
Rotation_Rate => Instance.Shaft_Speed,
Stroke => Actuator_Class.Stroke (Instance.Actuator));

Iinstance.Flow_Out := Axial_Piston_Pump_Class.Flow (Instance.Axial_ Pump);:

Instance.Flow_Out :=
Instance.Flow_Scale * Instance.Flow_Out + Instance.flow_Bias;

Jpdate ouput variables

if Shafz_Speed >= 0.1 then

Instance.Pump_Status := Set.On:
else

Instance.Pump_Status := Set.Off;
end if;

ORIGINAL PAGE I8
V-54 OF POOR QUALITY

..... cacludes cencrifugal gutp and axial plsTOn puTE

.Torgue
fugaL _Pump! -

p_l.ass.Torgue

crovides ©

he perinsdic update of zhe
Class.

tIriue ferrts

.Instante.Axlal_Fump!;

Use of state output functions
"1 from other classes to deter-»
mine state data.

v-55

ORIGINAL PAGE IS
OF POOR QUALITY

Ada Unit 36 Distribution_System_Class Package Specification

rg Units;

"
o
(¥}
~
[+

Wl
1]
&)
)
[
ot
"
v
¥
©
i1
]
o
0
I
[

<
n
o©
a
13
|
[
e
sy
V1]
n
'
0

i D Tlem i e
_Eng_vnits:

rackage Seu renares 3:-3
3cd_Eng_Tygpes:

-
package Ser rernames

s Limited privace;

[N

type CThiect
type Commands :Is {Set_Leak;:

- .""i'ﬁf!'t'ttfi"'t"' Modifiers S22 2222222222222 Al b R

procedure Create {Instance : in out Object:
parent_Name : in sering := "7
Press_Const : in Seu.Non_Dimensional):
procedure Request_State_Change {(Instance : in out Object:
Command : in Commands;
Arply : in Boolean;
Leak_Rate : in Seu.Callons_Per_Second :=
0.25); -- 15 gal per min
procedure Update (Instarnce : in out Object:
Delta_Time : in Seu.Seconds;
Consumed_Flow : in Seu.Gallons_Per_Second;
Supply_Flow v in Seu.Gallons_Per_Second):

-— "i.','ti.tt"tti't"' Selectors ""itii'l‘"t"'ti‘ti -
sunction System_Pressure (Instance : in Object) return Seu.Psi; ?
privace

type Object is

record
Leak_Rate . Seu.Gallons_Per_Second
Sys_Constani @ Seu.Non_Dimensional

Sys_Pressure : Seu.Psi
end record:

end Distribution_System _Class;

--| Abstracct: This package models the system of pipes which distcribute
-=1 hydraulic fluid between components.

—-1 Warnings: pragma Inline used in body

ORNIGINAL PAGE IS
OF POOR QUALITY

o~

Ada Unit 37 Distribution_System_Class Package Body
ratkage :céy Distr.oucion_3ystem_Tlass is

—— XTrXRYIETERNTATRAREONRN Cve:‘-caced Qpera:ors (A AS A RS RS R ERS RSN AA]

fimccion "t (Le’z : in 3eu.Non_Dimensional:
R.3nc ¢ in Seu.Sallons_Per_Second;
rezurn 3eu.lallens_Per_Second (s

recurn Seu.la..3ns_Per_Second {Set.Real_5 {Lef:z} * Set.Reai_6 {(Right));
end "**;

cragma Inline ["*%;;
'""'1'l".'Q"""Qi"ll"t"t".'l’i'.i'iiﬂtl"."ﬁﬁ'.'..

-- Report Symbols (used by Create)

procedure Report_Symbols {(Instance : in out Objecrt;
Parent_Name : in String := "*) is separate;

2223223222322 22 222X 222 2 0 PR 3 -14- A AAAR A LA A AL A A S AR L AL A LAALS LAS S

procedure Create (Instance : in out Object;
Parent_Name : in String := *~%;
Press_Const : in Seu.Non_Dimensional) is

begin

Report_Symbols (Instance => Instance, Parent_Name => Parent_Name) ;| e

Instance.3ys_Constant := Press_Const:

aend Create;

Q"'.'""'l"t"'t"'t"'.i""i"t""""'ﬁ’"f.""'..'

procedure Request_State_Change

{Instance : in out Object;

Command : in Commands;

Apply : in Boolean;

Leak_Rate : in Seu.Gallons_Per_Second := 0.25) is

pegin
case Command is
when 3ef_lLeak =>
if Apply then
Instance.Leak_Rate := Leak_Rate;
else
Instance.Leak_Rate := 0.0;
end if;
end case;
end Request_State_Change;

—_— "".'.'.""..'.'."""""'..Q"'."'t'-""'.""'l'..'

procedure Update (Instance in out Object;

Delta_Time : in Seu.3econds;

Consumed_Flow : 1in Seu.Gallons_Per_Second:

Supply_Flow r in Seu.Gallons_Per_Second) is
Total_Flow : Seu.Gallons_Per_Second;

Delta_Press : Seu.Psi:
begin

-- Determine pressure change by flow rate into/out of system multiplied by
-- system constcant.

Total_Flow := Supply_Flow - Consumed_Flow - Instance.lLeak_Rate;

Delta_Press := Seu.Psi (Instance.Sys_Constant * Total_Flow);

Register state data with
symbol map for use by
108.

v-57

—— Talzulaze mew 3ystem gressure. .

Tnszance.dys_Sressure = Instante.dys_Fressure - Delta _Press;
erd pdate;
IR X EEEREEZ R A R R R R AL RS R NS Selec:srs (AL REEEEEREREEENESSE I JSEp——

uncziin System_Cressure .Instance : in Cblect) return 3eu.Psi is
egin

iy ru

recurn | .aszance.3ys_Pressure);
end 3ystem_Pressure;

end Distributicn_3ystem_Class:

Ada Unit 38 Distribution_System_Class.Report_Symbols Separate Procedure

with Symbols;

separate (Distribution_System_Class)

precedure Report_Symbols {Instance : in out Object;
Parent_Name : in String := *7) is
begin
Symbols.Register (Name => Parent_Name & ".System_Pressure”, Class siate data regs-
Base_Type => Symbols.Real,] t@r0d with symbol map for
Tick_Address => Instance.Sys_Pressure’Address, use by I10S.
Tick_Size => Instance.Sys_Pressure’Size};

end Report_Symbols;

--| Abstract: This procedure reports the system pressure attribute of
-=i the distribution system class to the symbol map.

--1 Warnings: None

v-£8

Ada Unit 39 Generic_Reservoir_Class Package Specification

ZenerL:z
~yre Vclume_lnits s digits <>; Totally generic class. No dependence
syve VoL _Raze_Units is digits <> on SEU/SET This could be instan-
yTe Time_lnits is digizs <>; tiated in English or metric units. User
needs to ensure units are compatble
Max_Leix_Raze : 1n Vol_Race _Unics;

cackage Jerneric_Reserveir_Class is
tyre Cbiect is limiced private;
type Commands is {Leak_Malfunction, Set _Quyi;

e xekantresvrnnrrswganern Modifiers MEAAEFANRKRAANAVAANTINRNTS

procedure Create (instance : in out Object;
Parent_Name : in String := "%;
Initc_Qty : in Volume_Units);

procedure Request_State_Change (Instance : in out Object; .

Command : in Commands ; .
Quancity : in Volume_Units := 0.0);
procedure Update (Instance : in out Object;
Delta _Time : in Time_Units;
Consumed_Rate : in Vol_Rate_Units;
Recurned_Rate : in Vol _Rate_Units):

—— AR AR EAANANNTENONAR TN Selec:ors 2R ZERZ 2220 SRR RS A B S

function Fluid_Avail {(Instance : in Object) return Bocolean:

function Quantity (Instance : in CObject) return Volume_Unicts;

C

private
type Object is
record
Fluid_Avail : Boolean := False;
Qouy : Volume_Units := 0.0;
Leak_Rate : Vol_Rate_Units := 0.0;
end record:;
end Generic_Reservoir_Class;
—-1 Abstract: This package provides a real time simulation of a class
-1 of hydraulic reservoirs.
-1
--1 Warnings: This class should be instantiated with compatiable units
-1 {i.e. gallons, gallons_per_sec & seconds) ro prevent
-=1 incorrect calculations.

V-59

Ada Unit 40 Generic_Reservoir_Class Package Body
raz<i3ze zody Seneri:z_Reserwvelir_Jlass s !

e s I 2 L2 2 A X F R PR R R R R RS SR A SR AR AR SRR A RS EEA AR ERER A

funcz.on 7** Lefz @ Jol_Rate_Tinits; Right Time_Tni:Is;
recurn Vo.ume_Units is
regin
return ‘Ve.urme_tnits (Left) * Volume_nits {Right});
end **7;

- R R R R 222E2 222X R 2220 2 RS R AR AR AR RSl Rd Rl
-- Report_Symbols (used by Create}

procedure Report_Symbols {Instance : in out Cbject:
Parent _Name : in Scring) is separate;

PN 22222222222 2R 2R Rl RS Modiflers AR AR TR ATRAARAANTTITEIRTT N

procedure Create (Instance : in out Object;
Parenc_Name : in String = "":
Inic_Qty : in Volume_Units) is
begin
Report_Symbols {Instance => Instance, Parent_Name => Parenl_Name);
Instance.Qty := Init_Qty:; State variable based
Instance.Fluid_Avail := {(Instance.Qty > 0.0} - on input parameters
end Create; from this procedure.

- ""'"""""l't.t'f'iii'iti‘"ttttt't'""'t'.ﬁi'i"bt’t't

procedure Request_State_Change (Instance : in out Cbject:
Command : in Commands ;
Quantity : in Volume_Units := 0.0) is
begin
case Commard is

wheri Leak_Malfunction =>
if Instance.leak_Rate >= 0.0 then

Instance.Leak_Rate

Max_Leak_Rate;
else
Instance.Leak_Rate := 0.0;
end if;
when Ser Qty =>
Instance.Qty := Quantity;
end case;

end Request_State_Change;

P e T XTI IR ZE 2R R AR AR RSl LRl S

procedure Update (Instance 1 in out Object;
Delta_Time : in Time_Unics;
Consumed_Race : in Vol _Rate_Units;
Returned_Rate : in Vol_Rate_Unics) is

Delca_Cty : Volume_Unicts:
begin
Delta_Qty := {(Returned_Rate - Consumed_Rate] * Delta_Time;
Instance Qty := Instance.Qty + Delta Qty: %

if Instance.gty <= 0.0 chen

ORIGINAL PAGE 15
OF POOR QUALITY

Instance.Qry := 0.0;

V-60

(v""'
\

end if;
Instance.Fluild_Avail := not (Instance.Qty <= 0.0);
end Update;

—— kR kR AR R KRR W KN K AWk bk Kk k Selectors drodk kU Ak K i gk e ok g ok ke ok b ok ok ok ok Wk kb

function Fluid_Avail ({Instance : in Object) return Boolean is
begin

return (Instance.Fluid Avail);
end Fluid Avail;

—— Wk ok ok ok ok ek & ok ok sk ke kb kg ok % I 3k dr ok 3 ok o Sk e o ok o dle ok ok bk ok o ok ke ok R Rk kK

function Quantity (Instance : in Object) return Volume Units is
begin

return (Instance.Qty);
end Quantity;

end Generic_Reservoir_Class;

Ada Unit 41 Generic_Reservoir_Class.Report_Symbols Separate Procedure
with Symbols;

separate (Generic_Reservoir_ Class)
procedure Report_Symbols (Instance : in out Object; Parent_Name : in String)
begin

Symbols.Register (Name => Parent_Name & “.Quantity”,
Base_Type => Symbols.Real,
Tick_Address => Instance.Qty’ Address,
Tick_size => Instance.Qty’Size);

end Report_Symbols;

--1 Abstract: This procedure reports the quantity attribute of the
-=1 reservoir class to the symbol map.

is

V-61

(

Ada Unit 42 Valve_Class Package Specification
with Std_Eng_Types;
with Std_Eng_Units;

use Std_Eng_Types;
use Std_Eng_Units;

package Valve_Class is

package Set renames Std_Eng_Types;
package Seu renames Std_Eng_Units;

type Object is limited private;

type Commands is (Initialize, Freeze_Valve);

—— ek dr ko ke k ek ke i ok ok ke ok ek ok Modifiers khkkkhkhkkhkkdkkkkhhkdikd

procedure Create (Instance : in out Object; Parent_Name : in String

procedure Request_State_Change (Instance : in out Object;

Command : in Commands;
Apply : in Boolean) ;
procedure Update (Instance : in out Object;

Close_Cmd : in Set .On_Off;

Open_Cmd : in Set .On_Off;

Pressure : 1in Seu.Psi;

Power : in Seu.Volts;

Flow_Rate : in Seu.Gallons_Per_Second);

_ WA KA I A A A AT KA T AR AR AKX selectors ARk bk Ak kb khkkd _—_

function Pressure (Instance : in Object) return Seu.Psi;

= "y ;
I3

function Flow Rate (Instance : in Object) return Seu.Gallons_Per_ Second;

function Electrical Load (Instance : in Object) return Seu.Amps;

function Full Closed (Instance : in Object) return Boolean;

function Full_Open (Instance : in Object) return Boolean;
private

type Positions is (Open, In_Transition, Closed);

type Object is

record
Electrical Load : Seu.Amps := 0.0;
Flow_Rate : Seu.Gallons_Per_ Second := 0.0;
Movement Efficiency : Seu.Non_Dimensicnal 1.0;
Power : Seu.Volts := 0.0;
Position : Posltions := Closed;
Pressure : Seu,.Psi := 0.0;

end record;

end Valve_Class;

--| Abstract: This package provides a real time simulation of a class

-1 of hydraulic valves.

--| Warnings: None.

. V62

D

(

Ada Unit 43 Valve_Class Package Body

package body Valve Class is

P L 2 RA2 2222232222222 3223222 22222t R Rttt il

-- Report_Symbols (used by Create)

procedure Report_Symbols (Instance : in out Object;
Parent_Name : in String) is separate;

Ak kkkkFhkk ok kdkkkdkkrrkk Modifiers [222X2222 2R RRR R A RE 0 & Sua—"
procedure Create (Instance : in out Object; Parent_Name : in String := "y
begin
Report_Symbols (Instance => Instance, Parent Name => Parent_Name);
end Create;

Y S A2 2222222222222 X323 222222222220ttt i et

procedure Request_State_Change (Instance : in out Object;
Command : in Commands;
Apply : in Boolean) is

begin
case Command is

when Initialize =>

]

Instance.Pressure
Instance.Flow_Rate
Instance.Power
Instance.Electrical Load
Instance.Position

ITERTINT
LI]
Qoo
fd a4 e e
[+ IR sNolelNe
[7 TR P P

o
Q.

PP
]

when Freeze Valve =>

if Apply then

Instance.Movement Efficiency := 0.0; -- freeze valve
else

Instance.Movement Efficiency := 1.0; -- unfreeze valve
end if;

end case;

end Request State_Change;

I 2822222222222 223220200022 Rt aRis et ittt

procedure Update (Instance : 1in out Object;

Close_Cmd : in Set.On_Off;

Open_Cmd : in Set .On_Off;

Pressure : in Seu.Psi;

Power : in Seu.Volts;

Flow_Rate : in Seu.Gallons_Per_Second) is
begin

-- NOTE: Valve operation details have been omitted

Instance.Pressure := Pressure;
Instance.Power 1= Power;
Instance.Flow Rate := Flow_Rate;
Instance.Position := Open;

end Update;

L2220 RSSESRRRRRRERES R Selectors Kk kkrkkhk ko kkrkhhkdr ——

function Pressure (Instance : in Object) return Seu.Psi 1is
begin

return Instance.Pressure;

end Pressure;

I X 2 2R 2R 2222222333222 2223222222 RRRRRRRRRRRRARRARES S

V-63

C

function Flow_Rate {Instance : in Object) return Seu.Gallons_Per_Second is
begin

return Instance.Flow_Rate;
end Flow_Rate;

i"ki'k*i*i***i**ti***********tl****'******t*i****i*i‘k****i**i

function Electrical Load (Instance : in Object) return Seu.Amps is
begin

return Instance.Electrical_Load;
end Electrical_Load;

- i***i*i***i*ii**iﬁi*i*i*tt*t**tt**i***‘kti*******t**iii****t

function Full_Closed (Instance : in Object) return Boolean is
begin

return (Instance.Position = Closed};
end Full Closed;

f— ******i**‘k****i*i***i***ii************ﬁ***i**t****ii****t*i

function Full_Open {(Instance : in Object) return Boolean is
begin

return (Instance.Position = Open);
end Full_Open;

end Valve_Class;

Ada Unlit 44 Valve_Class.Report_Symbols Separate Procedure
with Symbols;

separate (Valve Class)

procedure Report_Symbols (Instance : in out Object; Parent_Name : in String)
begin
Symbols.Register (Name => Parent_Name & ”.Position”,
Base_Type => Symbols.Enum,
Tick_Address => Instance.Position’Address,
Tick_Size => Instance.Position’Size);

end Report_Symbols;

——| RAbstract: This procedure reports the position attribute of the
== the valve class to the symbol map.

--| Warnings: None.

is

vV-64

(

Ada Unit 45 Elec_Sys_Intfc_Defs Package Specification

with Dis;

with Orvc_Defs;
with Std_Eng_Types;
with Std_Eng_Units;

use Std_Eng_Types;
use Std_Eng_Units;

package Elec_Sys_Intfc_Defs is

package Set renames Std_Eng_Types;
package Seu renames Std_Eng_Units;

—— Circuit Breaker idents from NASA Space Station System Schematic,
-- Document NASA-S5-911-1234.

type Cb_Ids is (Cb_1021_001, -- Hyd Sys Motor Power sys 1
Cb_1021_002, -- Hyd Sys Motor Power sys 2
Cb_1021_003, -- Hyd Sys Motor Relay Power sys 1
Cb_1021_004, -- Hyd Sys Motor Relay Power sys 2
Cb_1022_001, -- Hyd Sys Isolation Valve Power sys 1
Cb_1022_002, -- Hyd Sys Isolation Valve Power sys 2
Cb_1023_001, -- Hyd Sys Pressure Sensor Power sys 1
Cb_1023_002, -- Hyd Sys Quantity Sensor Power
Cb_1031_001, -- Landing Light Power
Cb_1032_001,. -- Windshleld Wiper power
Cb_1033_001, -- UHF Radio Power
Cb 1033_002, -- VHF Radio Power
Cb_1033_003); -- Radio Control Panel Indicator power

type Elec Power 1is
record
Power : On_Off;
Voltage : Volts;
end record;

type Cb _Power is array (Cb_Ids) of Elec_Power;

P 2 2 22 2222222232222 322222222232 22222ttt bt A

-- Electric Power Messages -> Power provided to consumers - cne to many
*i***iiii***t*i******t**ti**i*ﬁ*****t***i***i****ii********i*i*t***t

type Elec_Power_Msgs is
record
Cb : Cb_Power;
end record;

type Elec_Power Msg Ptrs 1s access Elec_Power Msgs;
Elec_Power_ Msg_Size : constant Integer := Elec_Power_Msgs’Size;
-- message identifiers

Elec_Power_ Msg_Id : constant Dis.Message_Id :=
Dis.Register Message (Parent => Orvc_Defs.Electrical System,
Name => "Elec_Power_ Msg_ ID”,
Bits => Elec_Power_Msg_Size);

- ﬁ******ttiiii*i'tt*iii*i***i**i**t*ii****i*************i***ii****tii

-~ Electric Load Messages -> Load returned from consumers - many to one
tt*iii**tﬁi*i*tiit*i*tt*t**it*ti***i**ti*t*****i**ltti*ti*iti*tt*tt*

type Elec_Load_Msgs is
record
Cb : Cb_Ids;
Load : Seu.Amps;
end record;

type Elec_Load_Msg _Ptrs is access Elec_Load Msgs;
Elec_Load Msg_Size : constant Integer := Elec_Load Msgs'Size;
-- message identifiers

Elec_Load Msg_Id : constant Dis.Message_Id :=
Dis.Register_Message (Parent => Orvc_Defs.Electrical System,

& sys 2

v-65

D

] Name => “Elec_Load_Msg_ID”,
3 ; Bits => Elec_Load_Msg_size);

end Elec_Sys_Intfc_Defs;

-—| BAbstract: This package contains the Electrical System Interface
--1 Definition types.

Ada Unit 46 Hyd_Control_Panel_intfc_Defs Package Specification
with Dis;
with Orvc_Defs;

with Std _Eng_Types;
with Std_Eng_Units;

use Std_Eng_Types;
use Std_Eng_Units;

package Hyd_Control Panel Intfc Defs 1s
package Set renames Std_Eng_Types;
package Seu renames Std_Eng_Units;

B T R 222X RS2SR 22 R R SRRttt bl

-- Motor Command Messages -> Output to Hyd Sys Electric Motors
- *t*ti*t*i*****t***it**i**tt**ii’*i****t**i**ti****t*****i**t

type Motor_ Cmd_Msgs 1s
record
Motor_Cmd : Set.On_Off;
end record;

type Motor _Cmd_Msg_Ptrs is access Motor_Cmd_Msgs;

e
.,

Motor_Cmd_Msg_Size : constant Integer :=
Motor_Cmd_qus'Size;

-- message identifiers

Sys_1_Motor_Cmd_Msg_Id : constant Dis.Message_Id :=
Dis.Register_Message (Parent => Orvc_Defs.Hydraulic_Control_Panel,
Name => "Sys_1_ Motor_Cmd_Msg_ID”,
Bits => Motor_Cmd_Msg_Size);

Sys_2 Motor_Cmd_Msg_Id : constant Dis.Message_Id :=
Dis.Register_ Message (Parent => Orvc_Defs.Hydraulic_Control_Panel,
Name => 'Sys_Z_Motor_Cmd_Msg_ID”,
Bits => Motor_Cmd_Msg_Size);

R 2 2 2R 2222322223220 222222222222ttt hd

-- Valve Command Messages -> Output to Hyd Sys Isolation Valves
*iiit*it**i*i’i**t***ii*itttii’***i*tt****t***i*ti*k**t**ti*ti

type Valve Cmd_Msgs is
record
Vlv_Close Cmd : Set.On_Off;
Vlv_Open_Cmd : Set.On_Off;
end record;

type Valve Cmd Msg Ptrs is access Valve_Cmd Msgs;

Valve Cmd_Msg_Size : constant Integer :=
Valve_Cmd_Msgs’Size;

-- message identifiers

Sys_1 Valve_Cmd_Msg_Id : constant Dis.Message_Id :=
Dis.Register_ Message (Parent => Orvc_Defs.Hydtaulic_Control_Panel,
Name => "Sys_l Valve_Cmd_Msg_ID”,
Bits => Valve_Cmd_Msg_Size};

Sys_2_Valve_Cmd_Msg_Id : constant Dis.Message_Id :=
Dis.Register_ Message (Parent => Orvc_Defs.Hydraulic_Control Panel,

V-66

D

|

D

oo

e

Name => 7"Sys_2 Valve_Cmd_Msg_ID",
Bits => Valve Cmd_Msg_Size);

end Hyd_Control Panel_Intfc_Defs;

--| Abstract: This package contains the Hydraulic Control Panel
--1 interface type definitions.

Ada Unit 47 Hyd_Sys_Intfc_Defs Package Specification
with Dis;

with Orvc_Defs;

with Std_Eng_Types;

with Std_Eng_Units;

use Std_Eng_Types;
use Std_Eng_Units;

package Hyd_Sys_Intfc_Defs is

package Set renames Std_Eng_Types;
package Seu renames Std_Eng_Units;

o ke kkkhkkkkkkkkkkhkkk ok kkkk ok hk ok hkk ko kkodk ok ok okk ok kokdok ok odok ok ok ok kor

-- Aural Cue Messages -> output to Aural cue system for sounds
pu— **i*i****iit****i*i*i*iii**iiii*ii*i**ii*ititi**i**i*ii****

type Aural_Cue_Msgs is
record
Pump_Noise_Sys_l : On_Off;
Pump_Nolse_Sys_2 : On_Off;
Motor Noise_Sys_1 : On_Off;
Motor Noise_Sys_2 : On_Off;
end record;

type Aural Cue_Msg_Ptrs is access Aural Cue_Msgs;

Aural_Cue_Msg_Size : constant Integer :=
Aural Cue_Msgs’Size;

-- message identifiers

Aural Cue_Msg_Id : constant Dis.Message_Id :=
Dis.Register Message (Parent => Orvc_Defs.Hydraulic_ System,
Name => "Aural_Cue_Msg_ID”,
Bits => Aural_Cue_Msg_Size);
J— ti'tii*ki*i**********i*li***iti*****!t******kt**i********k****l**i**

-- Hyd Sys Pressure Messages -> System Pressure provided to consumers
J— ****i*it***ti**i*t**t**ti**i*ﬁ*i***tii****i****t********i*tt***l****

type Hyd_Sys_Press_Msgs is -- one to many -> output to consumers
record
Press : Seu.Psi;
end record;

type Hyd _Sys Press Msg Ptrs is access Hyd Sys_Press_Msgs;

Hyd Sys_Press_Msg_Size : constant Integer :=
Hyd_Sys_Press_Msgs’Size;

-- message identifiers

Sys_1_Press_Msg_Id : constant Dis.Message_Id :=
Dis.Register_Message (Parent => Orvc_Defs.Hydraulic_System,
Name => "Sys_1 Press_Msg_ID",
Bits => Hyd_Sys_Press_Msg_Size);

Sys_2_Press_Msg_Id : constant Dis.Message_Id :=
Dis.Reglster Message (Parent => Orvc_Defs.Hydraulic_System,
Name => "Sys_2 Press_Msg_ID”,
Bits => Hyd_Sys_Press_Msg_Size);
- **i*******ii*i*********i****ii*i*t***i*t*ttt*titti*i*******

-- Hyd Sys Flow Messages -> Flow rates returned from consumers
I . 22 S 22222222 22222223223 3222232222 2222220t Rtttnd

V-67

H E type Hyd Sys Flow_Msgs 1is -- many to one -> returned by consumers
N record
Press _Flow : Seu.Gallons_Per_Second;
Return Flow : Seu.Gallons_Per_Second;
end record;

type Flow Msg Ptrs is access Hyd Sys_Flow_Msgs;

Flow Msg_Size : constant Integer :=
Hyd_Sys_Flow Msgs’Size;

-- message ldentiflers

Sys_1_Flow_Msg_Id : constant Dis.Message_Id :=
Dis.Register_ Message (Parent => Orvc_Defs.Hydraulic_System,
Name => ”Sys_1_Flow_Msg_ID",
Bits => Flow_Msg_Size);

Sys_2_Flow_Msg_Id : constant Dis.Message_Id :=
Dis.Register Message (Parent => Orvc_Defs.Hydraulic_System,
Name => "Sys_2 Flow_Msg_ID”,
Bits => Flow_Msg_Size);

********ii**i*************i**i**i**i**ii***i*******it*iii****il*i*k*i**i**i***

-- Hyd Status Message -> Pump, Motor & Valve Status Returned to Hyd Control Panel

*t*i**ttt****i*****i*****i***t*****ti*ii***i******ii****ii*t**titii***tii***tt

type Hyd_Status_Msgs is -- returned to hyd control pnl by hyd sys
record
Motor_Status : Set.On_Off;
Pump_Status : Set.On_Off;

Valve Sensed Not Full Open : Boolean;
Valve_Sensed_Not_Full _Closed : Boolean;
end record;

type Status_Msg Ptrs is access Hyd Status_Msgs;

Status_Msg_Size : constant Integer :=
Hyd_status_Msgs’size;

¢

-- message ldentifiers

Sys_1_Status_Msg_Id : constant Dis.Message_Id :=
Dis.Register_Message (Parent => Orvc_Defs.Hydraulic_System,
Name => 'Sys_l_Status_qu_ID”,
Bits => Status_Msg_Size};

Sys_2_Status_Msg_Id : constant Dis.Message_Id :=
Dis.Reqgister_ Message (Parent => Orve_Defs.Hydraulic System,
Name => 7Sys_2 Status_Msg_ID”",
Bits => Status_Msg_Size);
p— i**i***ii***t*ii***********i*i***ti*t*****i**i*ii***ti*i*itt*t**tt

-- Hyd Sys Indicator Messages -> Status returned to Hyd Control Panel
- ii****i*t*i****i***i****t*t****i****t*****i**i***i******iit***iiii

type Hyd Sys_Indicator Msgs is -- returned to hyd control pnl by hyd sys
record
Sys_1_Press_Indicated
Sys_2_Press_Indicated
Sys_Qty_Indicated
end record;

Seu.Psiy
Seu.Psi;
Seu.Gallons;

type Hyd_Sys_Indicator_Msg Ptrs 1is access Hyd_Sys_Indicator_Msgs;
Hyd_Sys_Indicator_Msg_Size : constant Integer :=
Hyd Sys_Indicator_Msgs’Size;
-- message identifiers

Hyd_Sys_Indicator_Msg_Id : constant Dis.Message_Id :=
Dis.Register Message (Parent => Orve_Defs.Hydraullc_System,
Name => "Hyd Sys_Indicator_Msg_ID",
Bits => Hyd_Sys_Indicator_ Msg_5ize);

. ikh)f end Hyd Sys_Intfc_Defs;

--| Abstract: This package contains the Hydraulic System Interface

V-68

=

!

--1 definitions.

--1 Warnings: None.

V-69

C

i

¢

C

Ada Unit 48 Hydraullc_System_Partition Package Specification

tfc_Defs; L
with Hyd_Control_Panel_Intfc Defs External partition

with Elec_Sys_Intfc_Defs; - h L
with Hyd_Sys_Intfc_Defs; interface definitions

package Hydraulic_System_Partition is

end Hydraulic_System Partition;

-—| Abstract: This package contains the Hydraulic System Partition
-1 specification.

--] Warnings: None.

Ada Unit 49 Hydraulic_System_Partition Package Body
with Dis;

with Hydraulic_System_Defs;

with Symbols;

with Message;
with Mailbox; - SVM references

with Generic_Model;

with std_Eng_Types;
with Std_Eng_Units;
with Orvc_Common_Types;

with Generic_Reservoir_Class;
with Generilc_Sensor_Class;

with Accumulator_Class;
with Distribution_System Class;

with Drive_Unit_Class;
with Hydraulic_Pump_Class; Class references
with valve_Class;

use Std_Eng_ Types;
use Std_Eng_Units;

package body Hydraulic_System Partition is

package Set renames Std_Eng_Types;
package Seu renames Std Eng_Units;
package Oct renames Orvc_Common_Types;

package Pressure_Sensor_Class is
new Generic_Sensor Class (Load_Units => Seu.Amps,

Non Dim Units => Seu.Non Dimensional, . .
Sensed Units => Seu.Psi); Instantiation of generic
v) / classes for data types
package Quanhtity_Sensor_Class is
new Generlc_Sensor_Class (Load_Units => Seu.Amps,
Non_Dim Units => Seu.Non_Dimensional,
Sensed_Units => Seu.Gallons);
package Hyd Reservoir Class is
new Generic Reservoir_Class
(Volume_Units => Seu.Gallons, i . L.
Vol _Rate_Units => Seu.Gallons_Per_Second, — Generic class instantiation
Time_Units => Seu.Seconds,) with configuration object.
Max_Leak_Rate => 0.0333333); -- 2.0 gallons per min

V-70

=———=

an

C

tyrte Crive_ T
—yTe Is>lati

cyre Fumps L
-ype Sress_Senscrs is

Jutpucs

Cb_1021_001_Load_Msg_I
Cb_1021_001_Load_Msg
Cb_1021_002_Load_Msg_I
Cb_1021_002_Load_Msg

Cb_1021_003_Load_Msg_I
Cp_1021_003 _Load_Msg

Cb_1021_004 _Load_Msg_I
Cb_1021_004_Load_Msg

Cb_1022_001_Load _Msg_Id

Cpb_1022_001_Load_Msg

Cb_1022_002_Load_Msg_Id

Cb_1022_002_Load_Msg

Cb_1023_001 _Load_Msg_I
Cb_1023_001_Load_Msg

Cb_1023_002_Load_Msg_Id

Chb_1023_002_Load_Msg

Aural_Cue_Msg_Id : Mes
Aural_Cue_Msg

Sys_lL_pPress_Msg__Id
Sys_1_Press_Msg

Sys_2_Press_Msg_Id
Sys_2_Press_Msg

Sys
Sys

_Status_Msg_Id
_Status_Msg

1

-
1

-

Sys_2_Status_Msg_Id
Sys_2_Status_Msg

Hyd_Sys_Indicator_Msg_Id

Hyd_Sys_Indicator_Msg
Inputs

Sys_l_Flow_Msg_Id : Me
Sys_l_Flow_Msg
Sys_2_Flow_Msg_Id : Me
Sys_2_Flow_Msg :

Elec_Pwr_Msg_Id
Elec_Pwr_Msg

Mess

Sys_l_Motor_Cmd_Msg_Id
Sys_l_Motor_Cmd_Msg

Sys_2_Motor_Cmd_Msg_Id
Sys_2_Motor_Cmd_Msg

Sys_l_Valve_Cmd_Msg_Id
Sys_1_Valve_Cmd_Msg

its is array [(Cct.Sys

array (CJct.3ys_l_Sys_2)}

5 array [IcT ST
is 2rray ‘Tt of
18 array ‘<<t 34
1 array [Jct o34
mulacars s array (Cct.Sys_l_3ys_Z! o
sAgrinr_Systems s arra

array (Oct.Sys_1_8Sys_2)
Pressure_Sensor_C.ass.

d : Message.Out _Msg:
: Elec_Sys_Incfc_Defs.

d : Message.Out_Msg;
: Elec_Sys_Incfc_Defs.

d : Message.QOut _Msg;
: Elec_Sys_Intfc_Defs.

d : Message.Out_Msg;
: Elec_Sys_Incfc _Defs.

Message.Out_Msg:;
Elec_Sys_Intfc_Defs.

Message.Out_Msg;
Elec_Sys_Intfc_Defs.

d : Message.Qut_Msg;
: Elec_Sys_Intfc_Defs.

Message.Out _Msg;
Elec_Sys_Intfc_Defs.

sage.Qut _Msg;

Message.Out _Msg:
Hyd_Sys_Intfc_Defs.Hyd_Sys_Press_Msg_Ptrs;

Message .Out _Msg;
: Hyd_Sys_Incfc_Defs.Hyd Sys_Press_Msg_pPtrs;

Message.Out _Msg;

Y
v et 3YSs_L
]

H

Sys_2° of
cributior_3Syscem_Class.Clblect;
ni _1_Sys_2) of Drive_Unit_lliass.Ckiect;
sn_Valves is array {Oct.3ys_l_Sys_2} of Valve_Tlass.Cbhject;
s

of HyRraulic_Pump_CTlass.Cbject;

of
Objecc;

Elec_Load_Msg_Ptrs;
Elec_Load_Msg_Ptrs;
Elec_Load _Msg_Ptrs;
Elec_Load_Msg_Ptrs:
Elec_Load_Msg_Ptrs;
Elec_Load_Msg_Ptrs;
Elec_load_Msg_Ptrs;

Elec_Load_Msg_Ptrs;

Hyd_Sys_Intcfc_Defs.Aural_Cue_Msg_Ptrs;

Hyd_Sys_Intfc_Defs.Stacus_MggfﬁEfsj

Message.Qut_Msg;

Hyd_Sys_Intfc_Defs.S;;tus_Msg_Pcrs:

Message .Qut _Msg;

Hyd_Sys_Incfc_Defs.Hyd_Sys_Indicacor_qu_Ptrs;

ssage.In_Msg;

ssage.In_Msg;

age.In_Msg;

Message.In_Msg:

Hyd_Control_Panel _Incfc_Defs

Message.In_Msg;

Hyd_Control_Panel_Intfc_Defs

Message.In_Msg:

Hyd_Con:rql_PaneL_Incfc_Defs

Hyd_Sys_Intfc_Defs.Flow Msg_Ptrs;

Hyd_Sys_Intfc_Defs.Flow_Msg_Ptrs;

Elec_Sys_Incfc_Defs.Elec_Power_Msg_Ptrs;

Motor_Cmd_Msg_Prrs:
.Motor_Cmd_Msg_Ptrs;

.Valve_Cmd_Msg_Ptrs;

Types used
internally only by
this partition

Declaration of the
partiion's external in-
putoutput messages

V-7

ORIGINAL PAGE I8
OF POOR QUALITY

[}

Sys_z_Va;ve_?md_Msg_ 4 : Messagze.: 3
3ys_2 _vaive_lxd Msg : Hyd_:o.::a-_.a:e;_lncic_:efs.Valve_Zmd_Ms;_?:rs;

C

Instances of classes — the

s > 1_Systems: -— modei's (partiion’s) state.
Crive_Uni:t ori

Iso _Viv . Igciacion_Valves:

Press_Sensor Press_Senscrs;

sumge : Pumps:

Zuy _3Sensor : Quantity_Sensor_Class.Objecc:

Reservoir H Hyd_Rese:voir_Class‘Objec::

Incernal Parcizion Data

Delr Time : 3eu.Seconds:
Elar i_Time : Seu.Seconds 1= 0.0;
Hyd_-,s_Mbox . Mailbox.Mailboxes:
partition_Name : constant Scring := *Hydraulic_System®:
pid : Natural . 1= 423
Stabilized : Boolean := False;
Mctor _Power : Volt_A - {others => 3.0):
Motor_Relay_Power : on_Off_A := (others => Set .0ff) ;
Iso_Valve_Power : Volt_A ;= {others => 0.0);
Tempor valuee used to
Motor _Cmd . on_Off_A := (others => Set.0ff); transbr:ydauvdues\u
viv_Close_Cmd : on_off_A := {others => Set .Cff) ; s — extemal interfaces.
Viv_Open_Cmd on_Off_A := (others => Set.Off);
Motor_Speed : Rpm_A := (others => 0.0):
Motor_Status : On_Off_A := {others => Set .Off) ;
Pump_Status @ Oon_Off_A := (others => Set .Off)
Tot _Return_Flow : Gps_A := (others => 0.0):
Tot_Press_Plow : Sps_A := (others => 0.0}:
Num_Mbox_Empcy_Exceptions : Natural := 0;

VVVvaWVVVWVWVWVWVWVWNNVWWVVWWWWW

procedure Initialize_Outputs is separate:
procedure Report _Sympols {Parent_Name : in string) is separate;

procedure Inicialize_Model is separate:
procedure Process_Mailbox is separate;
procedure Register_Io is separate;

procedure Update_Inputs is separate:

procedure Update_Supply_Componencs is separate;
procedure Updace_?ress_Components is separate;
procedure Updace_Outputs is separace;

procedure Updnte_ﬂydraulic_Syscem is separate;

procedure Set _Up:
procedure Create Data;

procedure Self Init:
procedure System_Init; - Partiion mode routines.
procedure Run;

procedure Hold:
procedure Term;

package Thread_Exec is new Generic_Model.Periodic
{Name => Partition_Name,
Rate => Generic_Model .P10hz,

Execu:e_Set_Up_Model => Set_Up,
Execute_Create_Data_Model =»> Create_Data,
Execute.Self_tnit_Model => Self_Inict,
Execute_Syscem_Inic_Model =5 System_Inic,
Execute_Run_Model => Run,

SVM thread @
e——1 instantiation.

Execu:e_Freeze_Model => Run,

V-72

(

1§ separate;
ig serarate;
en_Ia.T 1s separate;
.S separate;

13 .s serarate;
separa:ef

gy oty oty

ry

Ko NS
o
V]

V1

14

$1

3

"
@

]

o

i

’

]

erd ﬁydraulic_Sys:em_Parti:ion:

=> o =
fxecute_Terminacte_Mcdel => Term!;

Ada Unit 50 Hydraulic_System_Partition.Create_Data Separate Procedure

separate (Hydraulic_System_Parcicion)~

procedure Create_Data is

_- For each message, CREATE_MSG is required

-- Create each many-to-one output message
Message.Many_To_Cne.Create_Msg {Oout _Msg_Id
Message.Many_To_Cne.Create_Msg (Our_Msg_Id
Message.Many_To_One.Create _Msg (Out _Msg_Id
Message.Many_To_One.Create_Msg {Ouc_Msg_Id
Message.Many_To_Cne.Create_Msg (Out_Msg_Id
Message.Many_To_One.Create Msg {Out _Msg_Id
Message .Many_To_One.Create_Msg (Out_Msg_Id

Message.Many_To_Cne.

Create_Msg

-- Create each one-to-many output

Message.Cne_To_Many
Message.One_To_Many
Message.One_Tc_Many
Message .One_To_Many
Message.One_To_Many

Message.Cne_To_Many

.Create_Msg
.Create_Msg
.Create_Msg
.Create_Msg
.Create_Msg

.Create_Msg

(Out_Msg_Id
message

{Out _Msg_Id
(Ouc_Msg_Id
{Out _Msg_Id
{Out_Msg_Id
(Out_Msg_Id
{Out _Msg_Id

=> Cb_1021_001_Load_Msg_Id);
=> Cb_1021_002_Load_Msg_Id}:
=> Cb_1021_003_Load_Msg_Id)};
=> Cb_1021_004_Load_Msg_Id);
=> Cb_1022_001_Load_Msg_Id);
=> Cb_1022_002_Load_Msg_Id)};
=> Cb_1023_001_Load_Msg_Id};
=> Cb_1023_002_load_Msg_Id)};

=> Aural_Cue_ Msg_Id):

=> Sys_l_Press_Msg_Id):

=> Sys_2_Press_Msg_Id);

=> Sys_l_Status_Msg_Id):

=> Sys_2_Status_Msg_Id):

=> Hyd_Sys_Indicacor_qu_Id):

__ Inicialize first output messages sent to other partitions

Inicialize_Qutputs;

-- Create each many_to_one input message
Message .Many_To_One.Create Msg {In_Msg_Id
Message.Many_To_One.Create_Msg (In_Msg_Id

-- Create each one-to-many input message
Message .One_To_Many.Create_Msg {In_Msg_Id
Message .One_To_Many.Create_Msg (In_Msg_Id
Message .One_To_Many.Create_Msg (In_Msg_Id
Message.One_To_Many.Create Msg (In_Msg_Id
Message .One_To_Many.Create Msg (In_Msg_Id

end Create_Data;

=> Sys_l_Flow_Msg_Id};
=> Sys_2_Flow_Msg_Id):

=> Blec_Pwr_Msg_Id):

z> Sys_l_Motor_Cmd_Msg_Id):
=> Sys_2_Motor_Cmd_Msg_Id);
=> Sys_l_Valve_Cmd_Msg_Id)}:
=> Sys-Z_Valve_Cmd_Msg_Id):

routine that creates the

OMGINAL PAGE 8
OF POOR QUALITY

V-73

-- imput and SuTpul TesSsSajes 5f

-- carmicizn and talls Tniviallz

Ada Unit 51 Hydraulic_System_Partition.Hold Separate Procedure

serarate ZHydra:li:_Sys:em_Far:i:ion)

crocedure Hold is

regin

_- Th Hold, susperd rnormal processing.

-~ Orher special actions (ie Step_Ahead) would be performed here.

null:
end Hold:
--1 Abstract: This procedure is an SVM mode routine that is
-=1 periodically called while the simulation in 'hold’
-~ mode .

Ada Unit 52 Hydraulic_Systﬂn_Puftluon.lniﬂalizo_Modd Separate Procedure

separate (Hydraulic_Syscem_Partition)

procedure Initialize_Model is

begin)

_- Initialize particion data and all objects such that the partition
-—— is in an initial conditions state. The details are left out in
-- this example.

null:;
end Initialize_Model;
__i Abscract: This procedure initializes the Hydraulic System
--1 including all of its components and partition data.
-=1 This procedure is calied by Set_Up and also by

--1 Self_Init during a full initialization (Full_IC =
-1 True) .

--{ Warnings: None.

Ada Unit 83 Hydrulllc_Systﬂn_Plrﬁﬂon.lniﬂalizo_Outputs Separate Procedure

separate (Hydrnulic_System_Partition)
procedure Initialize Qucputs is
begin

- This routine sets the output messages to a default value during
-- initcializations

Cb_1021_001_Load_Msg.Cb
Cb_lOZl_OOZ_Load_Msg.Cb :
Cb_1021_003_Load_Msg.Cb
Cb_102l_004_Load_Msg.Cb
Cb_lOZZ_OOl_Load_Msg.Cb -1
Cb_LOZZ_OOZ_Load_Msg.Cb
Cb_1023_001_Load_Msg.Cb
Cb_1023_002_Load_Msg.Cb

Elec_Sys_Incfc_Defs.Cb_lOZl_OOl;
Elec_Sys_Lntfc_Defs.Cb_1021_002;
Elec_Sys_Intfc,Defs.Cb_1021_003:
Elec_Sys_Incfc_Defs.Cb . .21_004;
Elec_Sys_Intfc _Defs.Cb. .22_001;
Elec_Sys_Incfc_Defs.Cb_A?22_002:
Elec_Sys_Incfc_Defs.Cb_lOZl_OQl;
Elec_Sys_Incfc_Defs.Cb_1023_002:

0.0; ’
0.0:

Wouoaow 0

Cb_LOZl_OOl_Load_qu.Load
Cb_lOZl_OOZ_Load_Msg.Load :

ORIGINAL PAGE IS
V-74 OF POOR QUALITY

¢

(

'
1
> <

_Lsad_Msg.L.o

_Load _Ms3.lo

L _lLoad Msg.Lo

SIS S S S
[FUREEN SIS S I

VIS IR By

3
Vet

Dz _Lcad_¥s3.lc
-

4

3

)
e

[oTe)

ad :=
ad :=
ad :=
ad =
ad :=
ad :=

Do o

[I 5 BN @/ BN o BN <P B |

<a

_Tie_Msg.Tump_Noise_3ys_l := Set.Cff;

_Tie _Msg.:-.Tp_Noise_3ys_2 = Sec.Off;

e _Msg.Mcoisr _Noise_Sys_L = Ser.Cff;

_Tue_Msg.Mctor_Neise_Sys_2 := Ser.Off;
3ys_L_Press_Msg.Fress := 0.0;
3ys_Z_Press_Msg.Press := 0.0;
Sys_l_3tatus_Msg.Motor_Status ;= Set.Off;
Sys_l_Status_Msg.Pump_Status ;= Set.Off;
Sys_:_s:acus_Msg.Valve_Sensed_Noc_Full_Open = True;
Sys_;_S:a:us_Msg.Valve_Sensed_Noc_Full_Closed = False:;
Sys_2_Status_Msg.Motor _Status = Set.Off;
Sys_2_Status_Msg.Pump_Status = Set.Off;
Sys_Z_Sta:us_Msg.Valve_Sensed_Not-Full_Open = True;
Sys_z_SLa:us_Msg.Valve_Sensed_Not_Full_Open = True;
Hyd_Sys_Indicacor_Msg.Sys_l_Press_Indicaced = 0.0;
Hyd_Sys_Indicator_Msg.Sys_2_Press_Indicated := 0.0;
Hyd_3Sys_Indicator_Msg.Sys_Qty_Indicared = 0.0;

Message.
Message.
Message.
Message.
Message.
Message.
Message.
Message.,
Message.
Message.
Message.
Message.
Message.

Message.

end Initcialize_Qutputs;

Many_To_One.
Many_To_OCne.
Many_To_One.
Many_To_One.
Many_To_One
Many_To_Cne.
Many_To_One.
Many_Tc_One.
One_To_Many.
One_To_Many.
One_Tc _Many.
Cne_To_Many.
Cne_To_Many.

Cne_To _Many.

Puc
Put
Put

Put

. Put

Put
Putc
Put
Put
Puc
Put
Put
Puc

Put

(Out_Msg_Id
(Out _Msg_Id
{Out_Msg_Id
(Out _Msg_Id
(Cut_Msg_Id

(Out_Msg_Id =

{Out _Msg_Id
(Out _Msg_1Id
(Cut_Msg_1Id
{Qut _Msg_Id
(Out_Msg_Id
(Out _Msg_Id
(Out _Msg_Id
{Out_Msg_Id

Cb_1021_001_Load_Msg_Id):
Cb_1021_002_Load_Msg_lId};
Cb_1021_003_Load_Msg_Id};
Cb_1021_004_Load Msg_Id):
Cb_1022_001_Load _Msg_Id):
Cb_1022_002_Load_Msg_Id);
Cb_1023_001_Load_Msg_Id);
Cb_1023_002_Load_Msg_Id};
Aural_Cue Msg_Id}:
Sys_l_Press_Msg_Id):
Sys_2_Press_Msg_Id):
Sys_l1_Status_Msg_Id)}:
Sys_2_Status_Msg_Id};
Hyd_Sys_Indicatpr_Msg_Id):

_-| Abstract: This procedure initializes all Hydraulic System
Partition output messages and sends them out once.

--1 Warnings: None.

Ada Unit 54 Hydraulic_System_Partition.Process_Mailbox Separate Procedure

with Mail_Msg_Types:
with Enter_Mailbox:
with Malfunction_Mailbox:

with Safestore_Mailbox;

separate (Hydraulic_System_Particion)

procedure Process_Mailbox is

-- The following are renames from the

-- package Set renames Std_Eng_Types:
-~ package Seu renames Std_Eng_Units;
-- package Oct renames Orvc_Common_Types:

Hydraulic_System_Partition body:

Set output
messages

send output
messages

QAIGINAL PAGE IS
OF POOR QUALITY

v-75

ramames Hyiraulls _3ystem_Tels:

rerames _
- renames Maliun

Ma_loax;

rn_Mallbcx; ’

I2 eguality operatsr:

irn Boo.ean renames Dis,"=";

Lf IT equallity ogerator:

Dis.Malfunczion_Id. return Boclean

funccion 7= [lLef
L

renaves Cis.

Msg_Tyte Mailbox.Msg_Types:

Enter_Msg Enter.Encer_Msg:
Malif_Msg Malfunction_Mailbox.Malfunction _Msg;
Datascore_Msg Mega_Mailbox.Mega_Msg;

Enter_Id Dis.Term_Id;
Malf_Id : Dis.Malfunction_Id;
Apply Boolean;

Invalid_Msg_lId
Invalid_Enter_Term
Invalid_Malfunction

excepcion;
exception;
exception:

function Sys_Id is new Malfuncrion_Mailbox.Selector [Oct .Sys_1_Sys_2};
for I in 1 Mailbox.Num_Mail_Msgs {Mailbox_Id => Hyd_Sys_Mbox) loop
Get the type of the next message
Msg_Type := Mailbox.Get_Next_Msg_Type(Hyd_Sys Mbox):
Process the mailbox message
case Msg_Type is

when Mailbox.Enter =>

Process the IOS Enter message

Mailbox.3et_Enter_Msg(Enter_MSg => Entcer_Msg,
My_Mailbox_Id => Hyd 3ys_Mbox];

Enter_Id := Enter.Id (Msg => Enter_Msg):

(

€

Hyd_Reservoir_Class.Request_Scate_Change

cail object to affect
change.

if Enter_Id = Hyd_Sys_Dis.Fluid_Level thern '---“~—._---
Request reservoir quantity change. Pass in new quantity.
{Instance => Reservoir, ‘—___——"”———
Command => Hyd_Reservoir_Class.Set_Qty.

Quantity => Seu.Gallons (Enter.Value Ré (Msg => Enter_Msg))):

elsif Enter_Id = Hyd_Sys_Dis.Flow_Pump_l then

Request pump 1 flow rate change. Pass in new rate.

Hydraulic_Pump_Class.Request_State_Change
{(Instance => Pump (Oct.Sys_l).
Command => Hydraulic_Pump_Class.Modify Flow_Rate,
Apply => True,
Bias => Seu.Non_Dimensiocnal

(Enter.Value_R6 (Msg => Encer_Msg))):

elsif Enter_Id = Hyd_Sys_Dis.Flow_Pump_2 then

Request pump 2 flow rate change. Pass in new rate.

Request rate change I

Hydraulic_Pump_Class.Request_State_Change

—

(Instance => Pump {Cct.Sys_2),

Command => Hydraulic_?ump_class.Modify_Flow_Rate.
Apply => True,

Bias z> Seu.Non_Dimensional

(Enter.vValue_R6 [Msg => Enter_Msg))}:

ORIGINAL PAGE 18

V-76

OF POOR QUALITY

else
no other enter values ire expected
: - v, i o bl
raisze _nva.ld_Znter_Term:
end if;
when Mailbox.Malfunczion =>
Sr-cess z—he ma.functicn message

Ma:i'lbex.Jes _Malfunction_Msg . Malfunction_ Msg => Malf _Msg,
My _Mailbox_Id => Hyd_Sys_Mbox!:

Jet the DI5 malfuncrion idencifier
Malf_Id := Malfunction.Id (Msg => Maif_Msg);

Cet che state of the malfunction (Cn or Off) and convert
to a bocolean to pass to Request_State_Change procedures.

aApply := Malfunction.State (Msg => Malf_Msg) = Set.On;
if Malf_Id = Hyd_Sys_Dis.Pump_No_Flow then

Process the hydraulic pump malfunction. Pass in which
pump (#1 or #2).

Hydraulic_?ump_C1ass.Request_State_Change
{Instance => Pump {Sys_Id (Msg => Malf Msg)),
Command => Hydraulic_Pump_Class.Pump_Fail,
Apply => Apply):

elsif Malf_Id Hyd_Sys_Dis.Press_Comp_Fail then

Process the pressure compensator malfunction. Pass in which
compensator (#1 or #2).

Hydraulic_Pump_Class.Requesc_Sta:e_Chanqe
(Instance => Pump (Sys_Id (Msg => Maif _Msg)),
Command => Hydraulic_Pump_Class.Compensator_Fail,

Apply => Apply,
Bias => 0.0,
Scale => 1.0}:

elsif Malf_Id = Hyd_Sys_Dis.Iso_vValve_Freeze then

wequest the valve tc freeze. Pass in which
vaive [(#l or #2).

vValve_Class.Request_State_Change
(Instance => Iso_V1lv (Sys_Id (Msg => Malf_Msg)).
Command => Valve_Class.Freeze_Valve,
Apply => Apply):

elsif Malf_Id = Hyd_Sys_Dis.Pressure_Sensor_Fail then
Request the pressure sensor Lo read incorrectly. Pass

in which sensor (#1 or ¥2), cthe error factor (scale) and
cthe offset (bias).

Prealure_Sensor_Class.Request_State_Change
{Instance => Press_Sensor (Sys_Id (Msg => Malf_Msq)},
Command => Pressure_Sensor_Class.Sensor_Incorrect,

Apply => Apply,
Scale => Seu.Non_Dimensional
(Malfunction.Scale (Msg => Malf_Msg)},
Bias => Seu.Psi (Malfunction.Bias (Msg => Malf Msgl));

elsif Malf_Id = Hyd_Sys_Dis.Motor_Zero Rpm then

Process the motor fail malfunction. Pass in which motor
(#1 or #2).

Drive_Unit_Class.Request_State_Change
(Instance => Drive_Unit (Sys_Id (Msg => Malf_Msg)),
Command => Drive_Unit_Class.Motor_Fail,
* Apply => Apply);

elsif Malf_Id = Hyd_Sys_Dis.Dist_Sys_Leak then

[

ORIGINAL PAGE 1§ V-77
OF POOR QUALITY

zallons_s
(Malfunc:ion‘aias ‘Msg => ! cf o Msg)))

else
- raise exception, no other malfunccions are expected.
raise Invalid,MaLEunccion;
end if:
when Mailbox.ReCurn_To_Da:as:ore =>
-— Process the return ro datastore message

Mailbox.Gec_Mega_Msg(Hega_MSg => Datastore_Msg.
My_Mailbox_Id => Hyd_Sys_Mbox):

- Get initiazation data from che mailbox and populate the model.
-- The details areé 1eft out in this example.

when others =2
- raise exception, RO other message types are expected.
raise Invalid_Msg_Id;
end case;
end looD:
exception
when Mailbox.Mailbox_Empty =>
Num_Hbox_Empcy~Exceptions 1= Num_Mbox_Empty_Excep:ions + 1
when others =%
aull: -~ allow propagation of all otherT exceptions
end ?rocess_Mailbox;

_-| Abstract: This procedure receives and processes che mailboX
-=1 messages . The Hydraulic gystem partition can receive

-=1 1cS enter OT malfunction mailbox messages . The
-=1 partition does not gend any mailbox messages -

_-1 warnings: The distribution system leak malfunction leak rate is
--1 received via the the pi - s acrribute of the of the
-1 aal funccion message .

-=1 The following exceptions are propagated peyond the
-1 scope of this procedure:

-1 Invalidﬂxsq_ld

--1 Invalid_Encer_Term

--1 vaalid_ualfunccion

Ada Unit 585 Hydraulic_Systom_? artition.Register _lo Separate Procedure

with orvc _Defs:
separate (Hydraulic_Sys:em_Partition) R -

procedure Register_lo 18 MNAL ‘

package Elec _Sys_‘if renames Elec _Sys_Incfc_Defs: ! H)OR PAGE 'S
package Hyd_Sys_If renames Hyd_Sys_I ntfc_Defs: QUAL]
package Cntrl_?nl_lf renames Hyd_Concrol_Panel_tntfc_DeEs: T\'

v-78

q

Rece.ve_Juece_z.ze

Mzl lzox.Register_Malilicx

Je.3scer the Tessajes sent from the Hydraulil

adngut

sTther gart.Tians

Message.Many_To_Cne
r2uc _Msg_Id
Farcition_~Frefix
Msg_Dis_Id
Msg_Prr_Addr

Message .Many_To_One.

{Out _Msg_Id
Particion_Prefi
Msg_Dis_Id
Msg_Ptr_Addr

Message.Many_To_One
{Ouc_Msg_Id
Parcition_Prefix
Msg_Dis_Id
Msg_Pctr_Addr

Message.Many_To_One
{out _Msg_Id
partition_Prefix
Msg_Dis_Id
Msg_Ptr_Addr

Message .Many_To_One
{Ouc_Msg_Id
Partition_Prefix
Msg_Dis_Id
Msg_Ptr_Addr

Message .Many_To_Cre
{(Cuc _Msg_Id
partition_Prefix
Msg_Dis_Id
Msg_Prr_Addr

Message.Many_To_One.

{Cut_Msg_Id
Particion_Prefix
Msg_Dis_Id
Msg_Ptr_Addr

Message .Many_To_One.

(Out _Msg_Id
Particion_Prefix
Msg_Dis_Id
Msg_Ptr_Addr

Message.One_To_Many.

(Out _Msg_Id
Parcition_Prefix
Msg_Dis_Id
Msg_Bit_Size
Execution_Rate
Msg_Prr_Addr

Message.One_To_Many.

(Qut _Msg_Id
Parcition_Prefix
Msg_Dis_Id
Msg_Bit_Size
Execution_Rate
Msg_Pcr_Addr

messages’ .

.Regiscer_Tc_Send_Msg

My_Tarzition_Sfrefix => Zryec _Cels.
My_Mailbox_Id => Hyd_Sys_Mbox;:

Systcem Lo

=> Cp_1021_001_Load Msg_Id,
-> Orvc_lefs.Electrical _System,

z> Blec_Sys_If.Elec_Load_Msg_Id,
=> Cb_lO;l_OOl_Load_Msg'Address)'

Register_To_Send _Msg

=> Cb_1021_002_Load_Msg_Id,
=> Orvc_Defs.Electrical_System,

=»> Elec_Sys_If.Elec_Load_Msg_Id,
=> Cb_1021_002_Load_Msg‘'Address):

.Register_To_Send_Msg

=> Cb_1021_003_Load_Msg_Id,
-> Orvc_Defs.BElectrical _System,

=> Elec_Sys_If.Elec_Load_Msg_Id,
=> Cb_1021_003_Load_Msg’Address};

.Register To_Send_Msg

=> Cb_1021_004_Load_Msg_Id,
=> Orvc_Defs.EBlectrical _Systenm,

=> Elec_Sys_If.Elec_Load _Msg_Id,
=> Cb_1021_004_Load_Msg‘Address);

.Register_To_Send_Msg

=» Cb_1022_001_Load_Msg_Id,
=» Orvc_Defs.Electrical_System,

=> Elec_Sys_If.Elec_Load_Msg_Id,
=> Cb_1022_001_Load_Msg'Address};

.Register_To_Send Msg

=> Cb_1022_002_Load_Msg_Id,
=»> Orvc_Defs.Electrical_Sysctem,

=> Elec_Sys_If.Elec_Load_Msg_Id,
=> Cb_1022_002_Load_Msg’Address}:

Register_To_Send_Msg

=> Cb_1023_001_Load_Msg_Id,
=»> Orvc_Defs.Electrical_System,

=> Elec_Sys_lf.Elec_Load _Msg_Id,
=> Cb_1023_001_Load_Msg'Address):

Register_To_Send_Msg

v Vv

W

Register_To_Send _Msg

=> Aural_Cue_Msg_Id,

Cb_1023_002_Load_Msg_Id,

Orve_Defs.Electrical_Sysctem,
Elec_Sys_If.Elec_Load_Msg_Id,
> Cb_1023_002_Load_Msg’Address);

=> Orvc_Defs.Aural _Cue,
=> Hyd_Sys_If.Aural_Cue_qu_Id,

> Hyd_Sys_If.Aural_Cue_qu_Size,
> Thread_Exec .Race_Of _Execution,

=> Aural_Cue_Msg’'Address);

Register_To_Send _Msg

=> Sys_l_Press_Msg_Id,
=»> Orvc_Defs.Hydraulic_Systems,

=> Hyd_Sys_If.Sys_l_Press_Msg_Id,

Hydra:liz_3yscterm,

Qutput messages

=> Hyd_Sys_If.Hyd_Sys_Press_Msg_Size,

=> Thread_Exec.Rate_Of_Execution,

=> Sys_l_Press_Msg’Address);

V-79

OMANAL PAGE 18
OF POOR QUALITY

Message.One_To_Many.“
;Cuc,qu_:d

Pa::i:ion_Prefix =>
Msg_:is‘Id >
Msg_ai:_size =>
Execution_Rate =>

Msg_?cr_Addr =>

Message.One_To_Many
(Ouc_Msg_Id
Parcicion_PreEix
Msg_Dis_Id
Msg_Bi:_Size
Execu:ion_Rate
Msg_Ptr_Addr

=>
=>
=2
=>
>

"o

>

Message.One_To_Many
{Out _Msg_Id

.Regis
=>

parcition _Prefix =>
5sg_Dis_Id =>
Msg_Bit_Size =>
Execution_Rate =>

Msg_Pcr_Addr

Reigster the messages sent
ocher partitions (input me

Message.Many_To_One.Regist

(In_qu_Id =>
Par:ition,?refix =>
Msg_Dis_Id =>
Msg_Bit_Size =>
Queue_Size =>
Msg_Ptr_Addr =>

Message‘Many_To_One.Regisc

(In_Msg_Id =>
Par:icion_?refix =>
Msg_Dis_Id =>
Msg_Bit_Size =>
Queue_size =>
Msg_Prr. Addr =>

Messaqe.Onc_To_Mnny.Regisc

(In_Msg_Id =>
Par;i;lon_?refix =>
Msg_Dis_Id =>
Execution _Rate =>
Msg_Petr_Addr =>
Message.One_ro_nany.Regist
(In_Msg_Id =>
Par:ition_?refix =>
Msg_Dis-Id =>
Execuction_ Rate =>
Msg_Ptr_Addr =>

Message.One_To_Many.Regist

({In_Msg_Id =>
Par:ition_?refix =>
usg_Dis_Iad =>
Execution_Rate =>
qu_?tr_Addr =>

er_To_Send_qu
Sys_l_Sta:us_Msg_Id,

Orvc_,efs.Hyd:aulic_System,
Hyd_Sys_[f.Sys_l_S:a:us_Msg_Zd,
Hyd_Sys_ii.Status_Msg_Size,
Thread_zxec.Rate_of_Execution,
Sys_l_S:atus_Msg'Address):

.Reqister_To_Send_Msg

Sys_Z_Status_Msg_Id.
Orvc_DeEs.Hydraulic,System,
Hyd_Sys_If.5ys_2_Stacus_Msg_Id,
Hyd_Sys_IE.Scatus_Msg_Size.
Thread_Exec.Ra:e_Of_Execution.
Sys_Z_Sta:us_Msg'Address}:

ter_To_Send_Msg

Hyd_Sys_Indicator_Msg_Id.
Orvc_Defs.Hydraulic_System,
Hyd_Sys_IE.Hyd_Sys_Indiqacor_Msg_Id,
Hyd_Sys_If.Hyd_Sys_{ndica:or;Hsg_Size,
Thread_Exec.Ra:e_Of_Execu:ion,
Hyd_Sys_Indicator_Msg'Address);

to the Hydraulic System from

ssages) .
Input messages

er_To_Recv_qu

Sys_l_Flow_Msg_Id,
Orvc_Defs.Hydraulic_System,
Hyd_Sys_IE.Sys_l_Flow_Msg_Id,
Hyd_Sys_If.Flow_Msg_Size.
Receive_Queue_Size.
Sys_l_Flow_Msg'Address):

er_To_Recv_Msg
Sys,2_Flow_Msg_Id,
Orvc_Defs.Hydraulic_Sys:em,
Hyd_Sys,If.Sys_Z_Flow_Msg_Id,
Hyd_Sys_If.Flow_Msg_Size,
Receive_Queue_Size,
Syé;Z;Flow_Msg'Address);

er_To_Recv_Msg
Elec_Pwr_Msg_Id,
Orvc_DeEs.Electrical_System,
Elec_Sys_If.Elec_?ower_Msg_Id,
Receive_Hertz_Ra:e,
Elec_?wr_Msg‘Address):

er_To_Recv_Msg
Sys_l_Motcr_Cmd_qu_Id,
Orvc_Defs.Hydraulic_Control_Panel,
Cntrl_Pnl_If.Sys_l_ﬁbcor_Cmd_qu_Id.
Receive_Hercz_Rate,
Sys_l_Motor_Cmd_qu'Address);

er_To_ﬁecv_Msg
Sys_2_Motor_Cmd_Msg_Id,
Orvc_Defs.Hydraulic;Control_?anel.
Cncrl_?nl_tf.Sys_Z_Motor_Cmd_Msg_Id,
Receive_Hertz_Rate,
Sys_Z_Motor_Cmd_Msg'Address);

Message.One_To_Many.Register_To_Recv_Msg

(In_Msg_Id 2>

Sys_l_Valve_Cmd_Msg_Id,

ORIGINAL PAGE IS
—or-POOR QUALTTY

v-80

C

=» Zrvc_lefs.Hydraclic_
=» Jntri_Pnl_If.Sys_i_]
> Recelve_Herzz_Race,

=> Sys_l_Valve_Imd _Msg’Adcress

F.:ne_To_Many.Regiscer_Tc‘Recv_Msg

-> Sys_2_valve_Imd Msg_Id,

-> Orve _lefs.Hydraulic_Control_Panei,
=» Cntrl_Pnl_If.3ys_2_Valve_Tmd_Msg_Id,
=> Receive_Hertz_Rate,

=> 3ys_2_Valve_Cmd_Msg-‘Address;;

Vot
uwi

<

{{

'8
Ut

_~. Apstract: This procedure registers the input and output messages
- of the Hydraulic System Partition.

-—7 Warnings: None.

Ada Unit 56 Hydraulic_System_Partition.Report_Symbois Separate Procedure

with Symbols:

separatce (Hydraulic_System_Partition)

procedure Report_Symbols (Parent_Name : in String) is

begin
-~ register all ccmplex variables needed by I0S that were created in this partition
null -- this parcition has only simple variables

end Reporc_Symbols:

——-| Abstract: This procedure reports the motor speed and motor status
-=i {as defined in the Hydraulic System Partition bedy} to
-=1 the symbol map.

--i Warnings: None.

Ada Unit 57 Hydraulic_System_Partition.Run Separate Procedure

separate (Hydraulic_System_Partitioen)

procedure Run is
tegin

—- This routine provides normal partition updactes.
Delta Time := Thread_Exec.Delta_Time;
Update_Hydraulic_System;

end Run;

——1 Abstract: This procedure is an SVM mode routine chat performs one
-=1 jteration of the Hydraulic System Parcition. This mode
--1 routine is periodically called while the simulation is
-=1 . in ‘run’ mode.

-~-1 Warnings: None.

Ada Unit 58 Hydraulic_System_Partition.Seif_Init Separate Procedure

separace [Hydraulic_System_Partition) _

procedure Self_Init is : - Oﬂi':ﬁNAL F'Q’;E ?S
OF POOR QUALITY

begin

V-81

Fra:ess_%a..:c.,
:ﬁl:.al-:e_:;:p_:s
grapiiized = Talse;
Elapsed_Time .= 2.0

Th:ead_axec.Ready_?o_TransiCion;

--1 Apstract: This procedure is an SVM mode routine that readies the
-1 Hydraulic SysteT r.reicion for system intialization.

-=1 If che input pa-i—eter Full_Ic is true,
-=1 Initialize_Modc g called to inicialize cthe partition
-=1 daca and all of .15 comporents.

-1 The stabilized flag is set €O False to allow
-=1 model stabilization in the System_Init procedure.

-1 Upon completion, the model nofifies the executive chat
--1 it is ready to cransition.

-1 NOTE: This is a one pass initialization, no jterating!

--] Warnings: None.

Ada Unit 58 Hydraullc_SVstem_Parﬁtlon.su_Up Separate Procedure
separate {Hydraulic_System,Partition)
procedure set_Up is

begin
-- Crea- inces of classes.
for - n Oct.Sys_l,Sys_z loop
A .:ulator_Class.Creace
(Instance -» Accumulator {Index) .
parentc_Name -»> partition_Name & '.accumulator(' &
Oct.Sys_l_Sys_Z'Image (Index) & -,
Init_Press > 4000.0,
Min_Gas_Press => 1000.0,
Hin_ﬁa._Vol => 1.0,
an_Gal_Vol => 2.0,
Hin_rluid_vOl => 2.0,
Max_Fluid Vol => 3.5);
Discribucion_System_Class.Create
{Instance -» Dist_SYs {Index} .,
parent_Name => parcition_Name & ~.dist_sys(” &
Oct.Sys_l_Sys_Z'Image (Index) & "}%. caiégy
press_Const => 0.15); OF ~4L P
A
Drive_Unir._C‘.ass.Crea:e %R "GE’
stance =» Drive_Unit {Index}, QUAL S
-ent _ltiame -» Partition_Name & '.drive_uni:(' & ' ’71’
Oct.Sys_l_Sys_Z’Image (Index) & ",
:earbox_Max_Torque -> 250.0};
Valve_Class.Create {(Instance -» I[so_V1iv (Index) .
parent _Name => Par:ition_Name & v iso_viv(® & %

Oc:.Sys_l_Sys_Z'Imaqe {Index) &))i

Pressure_Sensor_Class.Create -
(Instance -» Press_Sensor (Index) ,

v-82

Parent_Name => Partition_Name & ”.press_sensor(” &
Oct.Sys_1_Sys_2'Image (Index) & ")”,
Nominal_Load => 0.67);

Hydraulic_Pump_Class.Create
({Instance => Pump {Index),
Parent_Name => Partition_Name & 7. .pump (” &
Oct.Sys_l_Sys_2’Image (Index) & ")"};

end loop;

Quantity Sensor_Class.Create (Instance => Qty_Sensor,
Parent_Name => Partition_Name ¢
Nominal_Load => 0.5);

”

.qty_sensor”,

Hyd_Reservoir_Class.Create {Instance => Reservoir,
Parent_Name => Partition_Name & ".reservoir”,
Init_Qty => 5.25);

-- Initialize partition data and all objects.
Initialize_Model;
-- Report Partition level symbols
Report_Symbols (Parent_Name => Partition_Name):;
-- Link variables to the DIS for reporting to IOS.
-- Connect simple variables created locally by their address.

Dis.Connect_Term (Term => Hydraulic_System_Defs.Motor_1l_On_Off,
Address => Motor_Speed{Oct.Sys_1});

Dis.Connect_Term (Term => Hydraulic_System Defs.Motor_2_On_Off,
Address => Motor_Speed(Oct.Sys_2));

Dis.Connect_Term (Term => Hydraulic_System Defs.Motor_1_Rpm,
Address => Motor_Status(Oct.Sys_1));

Dis.Connect_Term (Term => Hydraulic_System Defs.Motor_2_Rpm,
Address => Motor Status(Oct.Sys_2));

-- Connect complex variables by their registered symbol name.

Dis.Connect_Term (Term => Hydraulic_System Defs.Fluid_Level,
Symbol => "Hydraulic_System.reservoir.quantity”);

Dis.Connect_Term
(Term => Hydraulic_System Defs.Pressure_Sys_l,
Symbol => ”"Hydraulic_System.dist_sys{sys_l) .system_pressure”);

Dis.Connect_Term
(Term => Hydraulic_System Defs.Pressure_Sys_2,
Symbol => ”Hydraulic_System.dist_sys(sys_2).system_pressure”);

Dis.Connect _Term (Term => Hydraulic_System Defs.Flow_Pump_1,
Symbol => ”"Hydraulic_System.pump (sys_1).flow_out”);

Dis.Connect_Term (Term => Hydraulic_System Defs.Flow_Pump_2,
Symbol => "Hydraulic_System.pump(sys_2).flow_out”);

Dis.Connect_Term
(Term => Hydraulic_System Defs.Iso_Valve_Sys_1,
Symbol => 7Hydraulic_System.iso_valve(sys_l) .position”);

Dis.Connect_Term
(Term => Hydraulic_System Defs.Iso_Valve_Sys_2,
Symbol => ”Hydraulic_System.iso_valve(sys_2).position”);

-- Register input/output messages
Register_TIo;

-- Notify Thread_Exec that have completed setup
Thread_Exec.Ready_To_Transition;

end Set_Up;

--1 Abstract: This 1s an SVM mode procedure that calls the ‘create’

QAAINAL PRCE 1S

V=83 OF POOR QUALITY

D

C

--1 procedure for every instance of a class and 'connects’
- the specified class attributes to the corresponding DIS
== terms. After all objects are created, Initialize_Model
! is called to intialize objects and partition data.

== Register_Io is called to register the input and output
== messages of the Hydraulic Partition. Upon completion,
-~ this procedure notifies the executive that the model
-=1 is ready to transition.

--] Warnings: None.

Ada Unit 60 Hydraulic_System_Partition.System_init Separate Procedure
separate (Hydraulic_System_Partition)

procedure System_Init is
beglin

—- This routine is called after Self_Init is complete.
-- Partition is updated until stable, then reports in.

Delta Time := Thread_Exec.Delta_Time;
if not Stabilized then

-- Update Hydraulic System for 5 seconds to allow components to
- stabilize at new conditions before reporting ready to transition.

if Elapsed_Time < 5.0 then
Update_Hydraulic_System;
Elapsed_Time := Elapsed_Time + Delta Time;
else
-- When stable, set flag and report in to executive.
Stabilized := True;
Thread_Exec.Ready_To_Transition;
end if;
else
- Once stablized, continue normal updates
Update_Hydraulic_System;
end if;

end System Init;

--] Abstract: This is an SVM mode procedure that perform the
-=1 Hydraulic System Partition system initialization by
== repeatedly cycling the model to stabilize it.

--| Warnings: None.

Ada Unit 61 Hydraulic_System_Partition.Term Separate Procedure

separate (Hydraulic_System_Partition)

procedure Term is
begin

-- Actions required to terminate processes would be performed here. This
-- could include deallocating devices and closing files.

null;

end Term;

--| Abstract: This procedure is an SVM mode routine that is called to

V-84

C

Ada Unit 62 Hydraulic_System_Partition.Update_Hydraulic_System Separate Procedure

separaze Hydraullc_3ystem_Partition;

cedure lpdaze_Hydraulic_3System is

-- Frocess Mailpex commands
Process_Mailbox:

-- Read input messages
Jpdate_Inputs;

-- Updace Pressurization Components (reservoir, drive units, pumps, etc;
Jpdate_Press_Components;

_- update Supply Components (valves, distribution plumbing, etc)
Update_Supply_Components;

-- Set Cutput messages
Update_QOutputs;

end Update_Hydraulic_System;

—-1! Apstract: This procedure performs the update of the Hydraulic
--1 System Partition

--! Warnings: None.

Ada Unit 63 Hydraulic_System_Partition.Update_Iinputs Separate Procedure

separace (Hydraulic_System_Partition)

procedure Update_Tnputs is

begin

-- This routine gets the input messages
Message.One_To_Many.Get (In_Msg_Id => Elec_Pwr_Msg_Id):
Message.ZTne_To_Many.Get (In_Msg_Id => Sys_1_Motor_Cmd_Msg_Id}:
Message .One_To_Many.Get (In_Msg_Id => Sys_2_Motor_Cmd_Msg_Id):
Message.One_To_Many.Get (In_Msg_Id => Sys_l_Valve,Cmq_Msg_Id);
Message.One_To _Many.Get (In_Msg_Id => Sys_2_Valve _Cmd_Msg_Id):
_- Determipne cotal flow rates consumed and returned by hyd components

Tot _Press_Plow (Oct.Sys_l1}) := 0.0;
Tot_Press_Plow (Oct.Sys_2) := 0.0;

Tot _Return_Flow (Oct.Sys_l) = 0.0;
Totr _Return_Flow (Oct.Sys_2) := 0.0;
for I in 1 .. Message.Many_To_One.Number_Of _Msgs_To_Get

(In_Msg_Id => Sys_l_Flow_Msg_Id) loop
Message.Many_To_One.Get (In_Msg_Id => Sys_l_Flow_Msg_Id):

Tot_Press_Flow (Oct.Sys_l) :=
Tot _Press_Flow {Oct.Sys_l) + Sys_l_Flow_Msg.Press_Flow:

Tot_Return_Flow (Oct.Sys_l)
Tot_Press_Flow {Oct.Sys_l) » Sys_l_Flow_Msg.Return_Flow;

V-85 ONIGINAL PAGE IS
OF POOR QUALITY

Ada Unit 64 Hydraulic_System_Partition.Update_Outputs Separate Procedure

end LITE:
I Ioin b
Vessagze.Many_T:o_Clre -3
TaI_Press_Flow cn.3ys_ 2 =
Tor_Press_Flow ‘Cci.3ys_2) « 3ys_2 _Flow_Msg.Press_Flow;
Toz_Return_Flow [Ccz.3ys_2) =
Tot_Sress_FLsow ‘Jcc.dys_ 20 - Sys_2_Flow_Msg.Return_rfiow;
end icop;

Abstract: This procedure updates the inputs to the Hydraulic
System Partition

Warnings: None.

separate {Hydraulic_System_Partition)

procedure Update_Outputs 1is

begin

Set Circuit breaker id for each load message

Cb_1021_001_Load _Msg.Cb
Cb_1021_002_Load_Msg.Cb :
Cb_1021_003_Load_Msg.Cb :
Cb_1021_004_Load_Msg.Cb :
Cb_1022_001_Load_Msg.Cb
Cb_1022_002 _Load_Msg.Cb :
Cb_1023_001_load_Msg.Cb
Cb_1023_002_Load_Msg.Cb :

Blec_Sys_Intfc _Defs.Cb_1021_001;
»?}g;_Sys_Intfc_Defs.Cb_1021_002:
Elec_Sys_Intfc_Defs.Cb_1021_003:"
Blec_Sys_Intfc_Defs.Cb_1021_004;
Elec_Sys_Intfc_Defs.Cb_1022_001:
Elec_Sys_Intfc_Defs.Cb_1022_002;
Elec_Sys_Intfc_Defs.Cb_1023_001;
Elec_Sys_Intfc_Defs.Cb_1023_002;

TS U T VA TR 1

Set elec load values for components.

Cb_1021_001_Load_Msg.Load :=
Drive_Unit_Class.Elec_Load (Drive_Unit {Oct.Sys_1));

Cb_1021_002_Load_Msg.Load :=
Drive_Unit_Class.Elec_Load (Drive_Unit (Oct.8Sys_2});

if Moror_Relay_rPower {Oct.Sys_l) = Set.Cn then
Cb_1021_003_Load_Msg.Load := 0.5;

else
Cb_1021_003_Load _Msg.Load := 0.0;

end if;

if Motor_Relay_Power (Oct.Sys_2) = Set.Cn then
Cb_1021_004_Load_Msg.Load := 0.5:

else
Cpb_1021_004_Load_Msg.Load := 0.0;

end if;

Cb_1022_001_Leocad_Msg.Load :=
Valve_Class.Electrical_Load {(Iso_Vlv {Cct.Sys_l)i;

Cb_1022_002_Load _Msg.load :=
Valve_Class.Electrical_Load (Iso_Vlv (Oct.Sys_2)):

Cb_1023_001_Load_Msg.Load :=
Pressure_Sensor_Class.Elec_Load (Press_Sensor {Oct.Sys_1)) +
Pressure_Sensor_Class.Elec_Locad (Press_Sensor (Oct.Sys_2)):

V-86

ot

o

p—_—

Io_1323_ 382 _Lecad _Msz.lLzad := Guantizy_fensor_llass.Zlec_Lcad (Quy_Zernmscorl:
Jet system pressure [aciua., 1ot sensel fzr ise Dy nyd ICTECNEnts
Zvys cress_Msg.Fress =

-- Zet 3vS

ess_Msg.Press

zem pressure [sensed)

caution_System_llass.

cucion_3ysten_Tlass.3ystem_Prassure [(Dist_3ys

System_Fressure (Dist

Hyd_Sys_Z:di:a:or_Msg.Sys_l_?:ess_Indica:ed

Fress

ure_3Zensor_l.ass.Sensed_Output {Press_Sensor

Hyd_Sys_anicator_Msg.Sys_2_Press_Indi:ated 1=

Press

~1

ure_Sensor_Class.Sensed_Cutput

{Press_Sensocr

-- Set sensed quantity value for output te hyd control panel

Hyd_Sys_Indica:ot_Msg.Sys_Qty_Indica:ed 1=
Quancity_Sensor_Class.Sensed_Output {Qty_Sensor) ;

.8ys_ 2},

for sutput to hydraulic control parel

(Ccr.Sys_Ll}i:

(Oct .Sys_1)1);

-- Set isolation valve position discretes for output to Hyd Control Panel

Sys_l_S:acus_Msg.Valve_Sensed_Noc_Full_Open iz
not {Valve_Class.Full_Cpen (Iso_Viv {(Oct.Sys_l)));

Sys_l_Stacus_Msg.Valve_Sensed_Noc_Full_Closed

(Valve_Class.Fuil_Closed {Iso_Vlv (Oct.Sys_l1))})):

Sys_2_Status_Msg.Valve_Sensed_Not _Full_Open :=
(Valve_Class.Full_Open {(Iso_Vliv (Oct.Sys_2))):

Sys_2_Status_Msg.Valve_Sensed_Not_Full_Closed
(Valve_Class.Full_Closed {Iso_Viv (Cct.Sys_2))):

Sys_l_Status_Msg.Motor_Status := Motor_Status (Oct.Sys_l}:
Sys_l_Stacus_Msg.Pump_Status := Pump_Status (Oct.Sys_1);
Sys_2_Status_Msg.Motor_Status := Motor_Status (Oct.Sys_2);
Sys_2_3tatus_Msg.Pump_Status := Pump_Status (Oct.Sys_2}:

-- Set Discretes

Aura:_Cue_Msg.
Aural_Ci
Aural_lue _Msg.
Aural_Clue_Msg.

Message

Message.
Message.
Message.
Message.
Message.
Message.
Message.
Message.
Message.
Message.
Message.

Message.

Message

end Updarce

ue_Msg.

-- Put messages

.Many_To_0One.Put
Many_To_One.Put
Many_To_One.Put
Many_To_One.Put
Many_ To_One.Put
Many_To_One.Put
Many_To_One.Put
Many_To_Cne.Put
One_To_Many.Put
Cne_To_Many.Put
One_Tc_Many.Put
One_To_Many.?ut
One_To_Many.Put
.One_To_Many.Put

_Qutputs:

for output to aural cue

pump_Noise_Sys_1 :=
Pump_Noise_Sys_2
Moror_Noise_Sys_1
Mocor_Noise_Sys_2 :=

{Qut_Msg_1Id
(Out_Msg_Id
(Out _Msg_Id
(Out_Msg_Id
{Out _Msg_Id
{Cut _Msg_Id
(Out _Msg_Id
(Out _Msg_Id
{Out _Msg_Id
{Out _Msg_Id
(OQut_Msg_Id
(Out _Msg_Id
(Out_Msg_Id
(Out_Msg_Id

Pump_Status
Pump_Stactus
Mocor_Status
Motor_Status

{sound} system

(Oct.Sys_1);
{Oct.Sys_2);
(Oct.Sys_l1)
(Oct.Sys_2)

-- Set motor and pump stacus discretes for output to hyd control panel

’

=> Cb_1021_001_Load _Msg_Id);
=> Cb_1021_002_Load_Msg_Id};
=> Cb_1021_003_Load _Msg_Id):
=> Cb_1021_004_Load_Msg_Id)}:
=> Cb_1022_001_Load_Msg_Id):

=> Cb_1022_002_Load _Msg_Id);
=> Cb_1023_001_Load_Msg_Id):
z> Cb_1023_002_Load_Msg_Id}:

=> Aural_Cue_Msg_Id}:;

=> Sys_l_Press_Msg_Id);

=> Sys_2_Press_Msg_Id):

=> Sys_l_Status_Msg_Id):

=> Sys_2_Status_Msg_Id):

=> Hyd_Sys_Indicator_Msg_Id)};

outputs of the Hydraulic

v-87

ORIGINAL PAGE 1§
OF MOOR QUALITY

-- 3yszem FALTitlion. é

Ada Unit 65 Hydraulic_System_Partition.Update_Press_Components Separate Procedure
separate 1Hyd:au;;:_3ys:e:_? reiciond

procecure Upda:e_?ress_?ampon&n:s is

-— Updace reservolr

Selector calls reuum-
ing data from "con-
nected” objects.

Hyd_Reservoir_Class.Upda:e
(Instance -> Reservoir,
Delta_Time -> Delta _Time,
Consumed_Rate => (Hydraulic_?ump_Class.Consumed_Flow (Pump (Oct.Sys_1)) +
Hydraulic,?ump_class.Consumed_?low (Pump {Oct.Sys_2)73»
returned_Rate => (To:_Return_?low (oct.Sys_1] *
Toc_Recurn_E‘low {Oct.Sys_2)))

-- -- Update Quantity Sensor and return electrical lcad

Quancizy_Sensor_Class.Updace
Instance => Qty_SensoT,
power _Avail =>
{Elec_?wr_Msg.Cb (Elec_Sys_IncEc_Defs.Cb_1023_002).Power = Setr.On),
sensed_Input => Hyd_Reservoir‘Class‘Quanticy (Reservoir))i

__ Set Motor and pump signals and power for components

Motor_Cmd (Oct.Sys_ 1) := Sys_l_ﬂotor_Cmd_Msg.Motor_Cmd;
Motor_Cmd {OcE .Sys_2) = Sys_2_Motor_Cmd,Msg.Motor_Cmd;

Motor _Fower {Oc:.Sys_l) b . =
Elec_Pwr_Msg.Cb (Elec_Sys_Int fc_Defs .Cb_1021_001} ,Voltage: %
Motor_Power (Ocr.3ys_2) :=

Elec_Pwr_Msg.Cb (Elec_Sys_Intfc_Defs.Cb_1021_002).Voltaqe:

Motor_Relay Power (Oct.Sys_l) 1= Elec_Pwr_Msg.Cb
(Elec_Sys_IntEc_Defs.Cb-1021_003).Power:
Motor_Relay_Power {Occ.Sys_Z) ¢ = Elec_?wr_Msg.Cb

(Elec_Sys_Intfc_Defs.Cb_1021_004).Power:

for Sys._Index in Oct.Sys_l_Sys_z loop

- wren relay power is not avail, or motor is commanded off, set moLor power
- co off. This replaces relay_1021_001 and relay_1021_002.

if (Motor_Relay_Power (Sys_Index) /= Set.On) or
(Motor_Cmd {Sys_Index) /= Set.On} then

Motor_Power (Sys_Index) := 0.0; \

Relays not modelied
end if; as objects - design
. . issue.

- Updace Drive Unit and set motor status discrete

Drive_Unit_Class .Update
{Instance =» Drive_Unit (Sys_Index),
Avail_Power => Motor Power {Sys_Index).
Delta_Time => Delta_Time, o
Torgue => Hydraulic_?ump_class.Torque (Pump (Sys_Indéx)));

if Drive_Unic_Class.Mocor_On (Drive_Unit {Sys_Index)) cthen
Mocor_Stacus (Sys_Index) sz Ser.Cn;

else
Motor_Status {Sys_Index) := set .Qff;

erd L& .. _
-_ Convert drive unit speed from rad/sec to revs/min for 105 display ?
Motor_Speed (sys_Index) := Seu.Rpm (9.5493 * Drive_Unit_class.Shaft_Speed
(Drive_Unit (Sys_Index))};

ONIGINAL PAGE IS
v-88 OF POOR QUALITY

et

(,”m

¢ Hydraull: rump and set PuUTE STatus.

qydraulic_Pump_T.Lass.”pdate
nszances => Fump ' Iys_Index;,
=>» Cel.za_Tirme,

:> Hyd_Reservcir_Class. luid_Avall ‘Reservelr),
afz_lpetd > Srive_Unit_Zlass.3halt_3peed (Crive_Unit (Sys_Index}},
cem_rressure => Jistribution_System_Class.System_Fressure

{(Dist_3ys (Sys_Index,;;:

R ERE

e
i

1 Hydrauli:z_Pump_Class.Pump_Cn (Pump !Sys_Index); then

pump_Szazus [3ys_Index) := Set.Cni
e.se
pump_Status {Sys_index) := Set.Off;
end if;
end loop;

end Update_Press_Comporents;

——i Abstract: This procedure updates the fluid pressurization
-—1 components of the Hydraulic System Partition.

Ada Unit 66 Hydraulic_System_Partition.Update_Supply_Components Separate Procedure

separate (Hydraulic_System_Partition)
procedure Update_Supply_Components is
begin

-- Set Valve signals and power

Iso_Valve_Power (Oct.Sys_l) := Blec _Pwr_Msg.Cb
(Elec_Sys_Intfc_Defs.Cb_1022_001) .Voltage:
Iso_Valve_Power ‘2ct.Sys_2) := Elec_Pwr_Msg.Cb

(Elec_Sys_Inctfc_Defs.Cb_1022_002) .Voltage:

Viv_Close_Cmd !(7ct.Sys_1l) := Sys_1_Valve_Cmd_Msg.Vlv_Close_Cmd;
Viv_open_Cmd@ (Cco.3ys_l) Sys_l_Valve_Cmd_Msg.Vlv_Open_Cmd;

Viv_Close_Cmd (Qct.Sys_2) = Sys_2_Valve_Cmd_Msg.Vlv_Close Cmd;
Viv_Cpen_Cmd (Cct.Sys_2) 1z Sys_2_Valve_Cmd_Msg.Vliv_Open_Cmd;

for Sys_Index in Oct.Sys_1_Sys_2 loop
-- Update Isolation Valve

Valve_Class.Update {Instance => Iso_Vlv {Sys_Index),

Close_Cmd => Vlv_Close_Cmd (Sys_Index),

Open_Cmd => Vlv_Open_Cmd {Sys_Index),

Presgure => Distribution_System_Class.System_Pressure
(Dist_Sys (Sys_Index)),

Power => Iso_Valve_Power (Sys_Index),

Flow_Rate => Hydraulic_?ump_class.Outpuc_Flow
{Pump (Sys_Index))):

-— Update distribution system (plumbing that connects components)

Distribution_System_Class.Update
{Instance => Dist_Sys (Sys_Index},
Delta_Time =» Delta_Time,
Consumed_Flow => Tot_Press_Flow {Sys_Index},
Supply_Flow => Valve_Class.Flow_Rate (Iso_Vlv {Sys_Index)));

-- Update pressure sensor

Pressure_Sensor_Class.Update
{Instance => Press_Sensor (Sys_Index)},
Power _Avail =>
(Elec_Pwr_Msg.Cb (Blec_Sys_Intfc_Defs.Cb_1023_001}.Power = Set .0On),

ORIGINAL PAGE IS

. V-89
OF PCOR QUALITY

Jistritul.tio

end Ypda:e_S;ppLy_Csmpc:en:s:

i . Th.s procedure .pdates the fluid supply compenents of
-t sra Hydraullz 3System Parcitioen

S\s:am_:lass.Eys:er_?:ess,:c ‘TisT _IYE (3ys_Index! i

¢

v-90

ORIGINAL PAGE IS
OF POOR QUALITY

C

e
b

A
!

Ada Unit 67 Orve_Common_Types Package Specification .

razxage Zrve_Commen_Tyres is

Similar to Std_Eng_Types.
but applies to a particutar
subsystem.

end lrvi_lowoon_Tyres
-- Arszrastz: This raskage provides the comreon data tyrpes used ty the
-—i parz.z.>ns 2% the ORVC.

--- Warnings: Nore.

Ada Unit 68 Orvc_Defs Package Specification ‘
with Dis;
wich Orvc_Common_Types:

package Orvc_Defs is

Orvc_Defs is like SSVTF's
SSTF_Defs package.

-- The top-level “Component _IDs” in the ORVC system

Aural_Cue : constant Dis.Component_Id :=
Dis.Register_Component (Dis.Null_Component, *Aural_cue”, Prefix => True);

Top—Level partiions

Hydraulic_Controi_Panel : constant Dis.Component_Id :=

Dis.Register_Component {(Dis.Null_Component, *Hydraulic_Control_Panel®, Prefix => True);

Control _Surfaces : constant Dis.Component_Id :=

Dis.Register_Compenent (Dis.Null_Component, *Control_Surfaces”, Prefix => True)};

Eleccrical_Sysctem : constant Dis.Componentc_Id :=

Dis.Register_Component (Dis.Null_Component, "Electrical_System”, Prefix => True);

Hydraulic_System : constanc Dis.Component_Id :=

Dis.Register_Component (Dis.Null _Component, *Hydraulic_System”, Prefix => True);

Landing_Gear : constant Dis.Component_Id :=
Dis.Register_Component (Dis.Null_Component, *Landing_Gear”, Prefix => True}:

Session_Manager : constant Dis.Component_Id :=

Dis.Register_Component {Dis.Null_Component, "Session_Manager”, Prefix => True);

Real_6 : constant DIs.Type_Id := P — {

Dis.Register_Type {Dis.Null_Component, “Real_6", Dis.Float_Tagq):

Dis versions of standard
types

Real_15 : conscant Dis.Type_Id :=
Dis.Register_Type (Dis.Null_Component, “Real_l5", Dis.Double_Tag}:

package O_OC is new Dis.Enum_Functions (Orve_Common_Types.On_Off) ;

on_Cff_Type_Id : constant Dis.Type_Id :=

Dis.Regiscter_Type (Parent => Orvc_lefs.Hydraulic_System,
Name => *On_Cff~,
The_Tag => Dis.Enum_Tag,
Size => 0_0.Size,
Labels => 0_O.lLabels):

end Crvec_Defs;

Ada Unit 69 Hydraulic_System_Defs Package Specification
with Dis;

with Orvec_Defs;

with Orve_Common_Types:

package Hydraulic_Syscem_Defs is

"ORINEL PAGE IS
OF 20D _pUe oy V-91

LR

razxage Jys_L_z .3 new Sis.Snum_Functlions (Crve_Common_Types.S

Foungds _Par_3g_In constanc =
Cis.Register_Tyre (Farent ve_Tefs.Hy
Nare "Pourds_Per_
my T

re_Tag float_Tag,
_ow_3ound => *0.3”
Hugh_Bound => *343.07;:

-- Register Terrs
Mccor_1_Cn_Off consctant Dis.Term_Id :=
Dis.Register_Term ({Farent => Jrve_Defs.Hydraulic_Sysctem,
Name => *Motor_1_Cn_Cff",
The_Type => Orvc_Defs.On_Off _Type_Id,
Users => (1 => Dis.Look))}:

Motor_2_On_Off constant Dis.Term_Id :=

Dis.Register_Term {Parent => Orvc_Defs.Hydraulic_System,
Name => *Motor_2_On_Off~,
The_Type => Orvc_Defs.On_Off_Type_Id,
Users => {1 => Dis.Look)}:

Mocor_1_Rpm constant Dis.Term_Id :=

Dis.Register_Term (Parent => Cr:_Defs.Hydraulic_System,
Name => "Mocor_1_RPM~,
The_Type => Orvc_Defs.Real_6,
Users => {1 => Dis.Look)}:

Motor_2_Rpm conscant Dis.Term_Id :=

Dis.Register_Term {Parent => Orvc_Defs.Hydraulic_System,
Name => "Motor_2_RPM*,
The_Type => Orvc_Defs.Real 6,
Users z> (1 =» Dis.Look)};

Fluid_Level constant Dis.Term_Id :=

Dis.Register_Term (Parent => Orvc_Defs.Hydraulic_System,
Name => *Fluid_Level~”,
The_Type => Orvc_Defs.Real_ 6
Users => (1 => Dis.Look_Enter));:

constant Dis.Term_Id :=

Dis.Register_Term {Parent => Orvc_Defs.Hydraulic_System,
Name => *Pressure_Sys_l°",

The_Type => Pounds_Per_Sq_In,

Users => (1 => Dis.Look}):

Pressure_Sys_1l

constant Dis.Term_Id :=

Dis.Register _Term (Parent => Orvc_Defs.Hydraulic_System,
Name . => *Pressure_Sys_2°7,

The_Type => Pounds_Per_Sq_In,

Users => (1 => Dis.Look)}:

Pressure_Sys_2

Flow_Pump_l : constant Dis.Term_Id :=
Dis.Register_Term (Parent => Orvc_Defs.Hydraulic_Syscem,
Name => "Plow_Pump_l",
The_Type => Orvc_Defs.Real_ 6,
Users => (1 => Dis.Look_Enter)):

Flow_Pump_2 : conacant Dis.Term_Id :=
Dis.Register_Term (Parent => Orve_UDefs.Hydraulic_System,
Name z> *Flow_Pump_2°,
The_Type => Orvc_Defs.Real_$6,
Users => (1 => Dis.Look_Enter)}:

Iso_Valve_Sys_1 constant Dis.Term_Id :=
Dis.Register_Term (Parent => Orvc_Pefs.Hydraulic_System,
Name => *Iso_Valve_Sys_l1",
The_Type => Orvc_Defs.Real_ 6,
Users => (1 => Dis.Look));

constant Dis.Term_Id :=
=> Orvc_Defs.Hydraulic_System,

Iso_Valve_Sys_2
Dis.Register_Term (Parent

Data types used in
definitons package

Register |OS "Look

only” term.

=

Register IOS
Look/Enter term

¢

V-2

ORGINAL PAGE IS
OF POOR QUALITY

(

Name => *"Isc_Va
The_Type => 2rvc_ D

IR

Users z> (1 => 3

rump _Ne _Flow constant Dis.Malfunction

Cis.Regiszer_Malfunction {Farent =>
Name =>
Length =>
Labels =>

Press_Comp_Fatil constant [Dis.Malfunct

Dis.Register_Malfuncrion (FParent =>
Name =>

Length =>

Labels =>

Iso_Valve_Freeze constant Dis.Malfunc
Dis.Register_Malfuncrion (Parent =>
Name =>

Length =>
Labels =>

Pressure_Sensor_Fail constant Dis.Mal
Dis.Register_Malfunction (Parent =>

lve_Zys_e
efs.Real _

Is.Len4

.

Iy ox

Id :=
Orvce_lefs.Hydraulic_System,
‘Pump_Nc_Flow”’,
2,
Sys_l_2.Labels) ;

A ——————

ion_Id :=
Orve_Defs.Hydraulic_System,
*pPressure_Comp_Fail”,

2,

Sys_l_2.Labels};

cion_I4d :=
Orve_Defs.Hydraulic _System,
*Iso_Valve_Freeze”,
2,
Sys_l_2.Labels);

function_Id :=
Orve_Defs.Hydraulic_System,

Register malfunction
with no parameters.

Register malfuncton
with parameters.

Name => "Pressure_Sensor_Fail”,

Length => 2,

Labels => Sys_l_2.Labels,

pl_Name => “"Scale”, @ mmrre——————

Pl_Low => 0.0,

Pl1_High => 5.0,

Pl_Type => Orvc_Cefs.Real_ 6

p2_Name => *Offsec”,

P2_Low => -4000.0,

P2_High => 4000.0,

p2_Type => Orvc_Defs.Real_6):
Motor_Zero_Rpm constant Dis.Malfunction_Id :=

Dis.Register_Malfunction (Parent =» Orvec_Defs.Hydraulic_System,

Name =» *"Motor_Zero_RPM”*,

Length => 2,

Labels => Sys_l1_2.Labels);
Dist_Sys_Leak : constant Dis.Malfunction_Id :=

Dis.Register_Malfunction (Parent =»> Orvc_Defs.Hydraulic_System,

Name =» *Dist_Sys_Leak”,

Length => 2,

Labels => Sys_l_2.Labels,

Pl1_Name => *Leak_Rate_GPM*,

Pl_Low => 0.0,

P1_High => 5.0,

Pl_Type => Orve_Defs.Real_6);

end Hydraulic_System Defs;

Abstract: This package contains the Hydraulic System DIS

definicions.

Warnings: Neone.

OMGINAL FAGE 15
CF MOOR QUALITY

V-3

C

{

(

